Cosmology with high (z>1) redshift galaxy surveys

Donghui Jeong
Texas Cosmology Center and Astronomy Department
University of Texas at Austin

Ph. D. thesis defense talk, 17 May 2010
Cosmology with HETDEX

Donghui Jeong
Texas Cosmology Center and Astronomy Department
University of Texas at Austin

Ph. D. thesis defense talk, 17 May 2010
Contents

Introduction
Part I. Ideal galaxy power spectrum
Part II. A realistic galaxy power spectrum
 II.1. Entering the non-linear regime
 II.2. Survey Window function for HETDEX
Part III. More cosmology with HETDEX
 III.1. primordial non-Gaussianity and HETDEX
The concordance cosmological model

- Our universe is flat, and dominated by cosmological constant.

From “WMAP+BAO+H_0” in Komatsu et al. (2010):

\[
H_0 = 70.4^{+1.3}_{-1.4} \text{ km/s/Mpc}
\]

\[
\Omega_\Lambda = 0.728^{+0.015}_{-0.016}
\]

\[
\Omega_m h^2 = 0.1349 \pm 0.0036
\]

\[
100\Omega_b h^2 = 2.260 \pm 0.053
\]

\[
\Omega_r h^2 = 4.174 \times 10^{-5}
\]

\[
\tau = 0.087 \pm 0.014
\]

\[
n_s = 0.963 \pm 0.012
\]

\[
\Delta^2_R(k_0) = \left(2.441^{+0.088}_{-0.092}\right) \times 10^{-9}
\]

where, \(k_0 = 0.002 \text{ Mpc}^{-1}\)
Four biggest challenges in cosmology

We do not know the nature of the building blocks!

- **Inflation**
 How does our Universe begin, or what drives inflation?
- **Dark Matter**
 What is/are the dark matter(s) made of?
- **Dark Energy**
 What drives the current acceleration?
 Is this really the cosmological constant?
- **Dark Matter, Dark Energy**
 Is General Relativity a valid theory in the cosmological scales?
The answer will come from galaxy surveys

• On-going, near future surveys
 – Baryon Oscillation Spectroscopic Survey ($0.2 < z < 0.7$, 10,000 sq. deg.)
 – WiggleZ ($0.2 < z < 1.0$, 1,000 sq. deg.)
 – **Hobby-Eberly Telescope Dark Energy eXperiment ($1.9 < z < 3.5$, 420 sq. deg.)**: Start observing from Fall 2011!!

• Surveys which may happen in the future
 – BigBOSS ($0.2 < z < 0.7$)
 – Euclid ($0 < z < 2.0$)
 – Cosmic Inflation Probe ($1 < z < 6$)
 – SUMIRE/LAS ($?? < z < ??$)
 – and more to be proposed
HETDEX and other surveys

- **HETDEX** will provide a unique window to high-z!

![Diagram showing the comparison of different surveys](image)

- SDSS LRG: \(\sim 1.3 \text{ [Gpc}/h]^3\)
- BOSS LRG: \(\sim 6 \text{ [Gpc}/h]^3\)
- WiggleZ: \(\sim 1.5 \text{ [Gpc}/h]^3\)
- HETDEX: \(\sim 3 \text{ [Gpc}/h]^3\)

Survey areas:
- 2dF GRS: 1000 sq. deg.
- SDSS LRG: 7600 sq. deg.
- BOSS LRG: 10,000 sq. deg.
- HETDEX: 420 sq. deg.
Contents

Introduction

Part I. Ideal galaxy power spectrum

Part II. A realistic galaxy power spectrum
 II.1. Entering the non-linear regime
 II.2. Survey Window function for HETDEX

Part III. More cosmology with HETDEX
 III.1. primordial non-Gaussianity and HETDEX
Evolution of density fluctuations

- In synchronous comoving gauge,

\[CMB \text{ decoupling}\ (z = 1091.36 \pm 0.91) \]

\[\frac{1}{aH} \]

\[\delta \propto a^2 \quad \delta \propto a \]

\[\text{Outside of 'comoving Horizon'} \]

- 500 Mpc/h
- 34.7 Mpc/h
- 1 Mpc/h

- CMB decoupling
 \(z = 1091.36 \pm 0.91 \)

- Quantum fluctuations

- Radiation Dominated
- Matter Dominated
Linear matter power spectrum

Primordial density $P(k)$

Power spectrum $[\text{Mpc}/h]^3$

Wavenumber $[h/\text{Mpc}]$
Linear matter power spectrum

Primordial density $P(k)$

Transfer function $T(k)$

Power spectrum $[\text{Mpc}/h^3]$ vs. wavenumber $[h/\text{Mpc}]$.
Linear matter power spectrum

Primordial density $P(k)$

Transfer function $T(k)$

Baryon Acoustic Oscillation

k_{eq}
Baryon Acoustic Oscillation in WMAP7

- Cosmic Microwave Background temperature map (WMAP7)

 Acoustic scale $\sim 0.6^\circ$
 ($l_A = 302.69 \pm 0.076$)

$\langle T \rangle (\theta) = \int \frac{dl}{2\pi} (W_l^TT)^2 (\bar{\theta} + \bar{\zeta} l^2) C_l^{TT} J_0(l\theta)$

Komatsu et al. (2010)
The acoustic (sound horizon) scales

- Comoving distance traveled by the sound waves from the Big-bang to decoupling epochs \textbf{(MEASURED FROM CMB!!)}
 - CMB decouples from baryon at $z=1091.36 \pm 0.91$
 \[d_{\text{CMB}} = 146.8 \pm 1.8 \text{ Mpc} \]
 - Baryon decouples from photon at $z=1020.5 \pm 1.6$
 \[d_{\text{BAO}} = 153.3 \pm 2.0 \text{ Mpc} \]
BAO and dark energy

• d_{BAO} is a standard ruler!
• We can measure the angular diameter distance, $d_A(z)$ and Hubble parameter, $H(z)$:

$$d_{\text{BAO}} = d_A(z) \Delta \theta = c \frac{\Delta z}{H(\tilde{z})}$$

• $d_A(z)$ and $H(z)$ depend on dark energy:

$$H^2(z) = H_0^2 \left[\Omega_m (1 + z)^3 + \Omega_k (1 + z)^2 + \Omega_{DE} (1 + z)^3(1+w) \right]$$

$$d_A(z) = \frac{\chi(z)}{1 + z} \left[1 - \frac{k}{6} \frac{\chi^2(z)}{R^2} \right] \quad \chi(z) = c \int \frac{dz}{H(z)}$$
From matter to galaxy $P(k)$: bias

- Galaxies are biased tracers:
 The distribution of galaxies is not the same as that of matter fluctuation.

- On large scales, we may assume that galaxy formation is a local process:

 $$\delta_g(x) = \epsilon + b_1 \delta(x) + \frac{1}{2} b_2 \delta^2(x) + \frac{1}{6} b_3 \delta^3(x) + \ldots$$

- In linear regime, where matter density contrast is small, we may truncate the expansion in linear order (linear bias):

 $$P_g(k) = b_1^2 P_L(k) + P_0$$
The galaxy $P(k)$ in redshift space

- Peculiar velocity, which further shift the redshift of the galaxy induces yet another change in power spectrum (Kaiser effect)
- As a result, power spectrum becomes anisotropic: increase in clustering along line of sight direction

\[P_{\text{red}}(k, \mu) = P_0 + \left[b_1^2 + 2b_1 f \mu^2 + f^2 \mu^4 \right] P_L(k) \]

\[f = \frac{d \ln D_+(a)}{d \ln a} \]
Distances from full power spectrum

- In galaxy surveys, we chart galaxies by (θ, ϕ, z).
- **Observed power spectrum** using reference cosmology is rescaled and shifted (in log scale) relative to the **true power spectrum**:

\[
P_{\text{obs}}(k_{\text{ref} \perp}, k_{\text{ref} \parallel}) = \left(\frac{D_A, \text{ref}}{D_A} \right)^2 \left(\frac{H}{H_{\text{ref}}} \right) P^g_s(k_{\perp}, k_{\parallel})
\]
Not just BAO: Alcock-Paczynski test

- From a spherically symmetric object, we can measure
\[
\frac{c\Delta z}{\Delta \theta} = d_A(z)H(z)
\]

- By measuring distance from the full power spectrum, we are effectively doing AP test at every points in Fourier space:
\[
\frac{k_{\perp,\text{ref}}}{k_{\parallel,\text{ref}}} = \frac{d_A(z)H(z)}{d_{A,\text{ref}}(z)H_{\text{ref}}(z)} \frac{k_{\perp}}{k_{||}}
\]

- [Important] We need to know the correct angular dependence!
BAO vs. full power spectrum

- It will improve upon the determination of both D_A and H by a factor of two, and of the area of ellipse by more than a factor of four!

Shoji, Jeong & Komatsu (2008)
More information from growth

- Let’s talk about \(f = \frac{d \ln D}{d \ln a} \)
- In principle, we can constraint dark energy from the growth:
 \[
 \frac{d^2 g}{d \ln a^2} + \left[\frac{5}{2} + \frac{1}{2} (\Omega_k(a) - 3w_{\text{eff}}(a)\Omega_{\text{de}}(a)) \right] \frac{dg}{d \ln a} + \left[2\Omega_k(a) + \frac{3}{2}(1 - w_{\text{eff}}(a))\Omega_{\text{de}}(a) \right] g(a) = 0
 \]
 where \(g(a) = \frac{D(a)}{a} \).
- As normalization of power spectrum is degenerate with growth factor and bias, we may not able to extract the growth information from them.
- However, from the angular dependence in redshift space distortion, we can measure \(f = \frac{d \ln g}{d \ln a} + 1 \)!
- This can be a consistency check for General Relativity!
Contents

Introduction
Part I. Ideal galaxy power spectrum
Part II. A realistic galaxy power spectrum
 II.1. Entering the non-linear regime
 II.2. Survey Window function for HETDEX
Part III. More cosmology with HETDEX
 III.1. primordial non-Gaussianity and HETDEX
Everything becomes non-linear!

1. non-linear gravity
2. non-linear galaxy bias
3. non-linear redshift space distortion

Reid et al. (2009)
Perturbation Theory calculation

- Next-to-leading order perturbation theory with local bias yields a following theoretical template (Ch2. of dissertation)

\[
P_{gs}(k, \mu, z) = P_0 + b_1^2 \left[P_m(k, z) + b_2 D^4(z) P_{b2}(k) + b_2^2 D^4(z) P_{b2b2}(k) \right] \\
+ 2 f \mu^2 b_1 b_\theta P_\delta\theta(k, z) + f^2 \mu^4 b_\theta^2 P_{\theta\theta}(k, z) \\
+ D^4(z) \left[P_{gs, 22}^{rest}(k, \mu; b_1, b_2) + 2 P_{gs, 13}^{rest}(k, \mu; b_1) \right]
\]

- Now we have 4 free ‘bias’ parameters: \(b_1, b_2, b_\theta, P_0\)
- This template can model the non-linear galaxy power spectrum of HETDEX!
- Let me show it one by one.
Non-linear matter clustering

Real space matter power spectrum

\[P_{gs}(k, \mu, z) = P_0 + b_1^2 \left[P_m(k, z) + b_2 D^4(z) P_{b2}(k) + b_2^2 D^4(z) P_{b22}(k) \right] \]

\[+ 2 f \mu^2 b_1 b_\theta P_{\delta\theta}(k, z) + f^2 \mu^4 b_\theta^2 P_{\theta\theta}(k, z) \]

\[+ D^4(z) \left[P_{gs,22}^{(rest)}(k, \mu; b_1, b_2) + 2 P_{gs,13}^{(rest)}(k, \mu; b_1) \right] \]
Non-linear matter power spectrum

Jeong & Komatsu (2006)
BAO in nonlinear matter $P(k)$

Based on this study, we have decided to design HETDEX such that we measure $P(k)$ well at $k<0.3 \, h \, \text{Mpc}^{-1}$.
Non-linear redshift space distortion

Redshift space matter power spectrum

\[P_{gs}(k, \mu, z) = P_0 + b_1^2 \left[P_m(k, z) + b_2 D^4(z) P_{b2}(k) + b_2^2 D^4(z) P_{b_{22}}(k) \right] \]
\[+ 2 f \mu^2 b_1 b_\theta P_{\delta\theta}(k, z) + f^2 \mu^4 b_\theta^2 P_{\theta\theta}(k, z) \]
\[+ D^4(z) \left[P_{gs, 22}^{(rest)}(k, \mu; b_1, b_2) + 2 P_{gs, 13}^{(rest)}(k, \mu; b_1) \right] \]

- We introduce a Lorentzian suppression for “Finger of God” effect

\[P_s^{total}(k_\perp, k_\parallel) = P_s^{coherent}(k_\perp, k_\parallel) \frac{1}{1 + f^2 k_\parallel^2 \sigma_p^2} \]
Finger of God effect

• Velocity dispersion will **suppress** the power along the line of sight!

• In simulation, pair-wise velocity is observed to follow the exponential profile. (Scoccimarro 2004)
2D redshift space matter $P(k)$

Jeong (2010)

$\sigma_p^2 = 1.39 \pm 0.12 \, [\text{Mpc/h}]^2$

$\chi^2 = 1.079 / \text{DoF} = 318$

$\sigma_p^2 = 3.44 \pm 0.13 \, [\text{Mpc/h}]^2$

$\chi^2 = 1.144 / \text{DoF} = 318$

$z = 3$

$z = 2$

- $k_{\parallel} [\text{h Mpc}^{-1}]$
- $k_{\perp} [\text{h Mpc}^{-1}]$

- N-body
- Perturbation Theory
- PT + Finger of God
redshift space matter $P(k)$

Power spectrum, $P(k)$ $[h^{-3} \text{Mpc}^3]$

- Perturbation Theory
- Perturbation Theory + FoG
- N-body Data
- Linear Spectrum (Kaiser)

wavenumber, k $[h \text{Mpc}^{-1}]$

Jeong (2010)
BAO in redshift space matter $P(k)$

$\frac{P(k)}{P_{\text{no-osci}}(k)}$ vs. wavenumber, k [h/Mpc]

$z = 3$

$z = 2$

Jeong (2010)

HETDEX

- Linear Theory
- Perturbation Theory
- PT + Finger of God
- N-body data (512 [Mpc/h])
- N-body data (256 [Mpc/h])
Finally, non-linear galaxy bias

Real space galaxy power spectrum

\[P_{gs}(k, \mu, z) = P_0 + b_1^2 \left[P_m(k, z) + b_2 D^4(z) P_{b2}(k) + b_2^2 D^4(z) P_{b22}(k) \right] \]

\[+ 2 f \mu^2 b_1 b_\theta P_{\delta \theta}(k, z) + f^2 \mu^4 b_\theta^2 P_{\theta \theta}(k, z) \]

\[+ D^4(z) \left[P_{gs,22}^{(rest)}(k, \mu; b_1, b_2) + 2 P_{gs,13}^{(rest)}(k, \mu; b_1) \right] \]
Non-linear galaxy power spectrum

Jeong & Komatsu (2009a)

Millennium power spectrum: nonlinear bias + linear $P(k)$

$z=3$

$z=2$

$P(k)$ [Mpc$/h^3$]

wavenumber [h/Mpc]

k_{max}
BAO in galaxy $P(k)$

- $\sigma_8=0.9$ of the Millennium Simulation is too high compare to the concordance value $\sigma_8=0.814$.
- That’s why we have a smaller k_{max} here.
The HETDEX galaxy power spectrum

- Perturbation Theory correctly models the non-linearities in the galaxy power spectrum! *I believe we are ready for data.*
BAO from HETDEX

- galaxy power spectrum in redshift space
- galaxy power spectrum in real space
- nonlinear matter power spectrum in real space
- linear matter power spectrum in real space

Baryonic acoustic oscillation $P(k)/\alpha - \alpha_{nw}$

wavenumber k [h/Mpc]
Contents

Introduction

Part I. Ideal galaxy power spectrum

Part II. A realistic galaxy power spectrum
 II.1. Entering the non-linear regime
 II.2. Survey Window function for HETDEX

Part III. More cosmology with HETDEX
 III.1. primordial non-Gaussianity and HETDEX
HETDEX is different from N-body

- N-body = constant number density, cubic box
- HETDEX = a lot of complications
 - Selection + Masking + Survey geometry
 - CCD sensitivity, Sky scanning pattern, Cloud
The thing I will Fourier transform

- What we will measure is the estimated density contrast, but it is different from the "real" density contrast!!

\[F(r) = w(r) \left[n_g(r) - \alpha n_s(r) \right] = w(r) \bar{n}(r) \left[\delta_g(r) - \delta_s(r) \right] \]

\[\equiv W(r) \left[\delta_g(r) - \delta_s(r) \right] \]

- LAE selection function, \(n(z) \)
- HET shot centers
- Sky scanning pattern
- Shot weight (cloud, etc)
- IFU masking pattern
- Weight for each IFU unit

Window function

\[W(r) \equiv \bar{n}(r) w(r) \]

- White noise from random catalogue
- Density contrast of LAE
Number density of HETDEX

- is determined by “shot”+”masking”+”selection”
 \((x, y = \text{angular}, z = \text{radial})\)

\[
\bar{n}(\mathbf{r}) \equiv S(x, y) \otimes M(x, y)n(z) \quad \rightarrow \quad W(\mathbf{k}) = \tilde{S}(k_x, k_y)\tilde{M}(k_x, k_y)n(k_z)
\]
Angular-window (const. weighting)

\[
d^2 \frac{\text{sinc}(k_x d/2) \text{sinc}(k_y d/2)}{\text{sinc}(k_x \Delta_m/2) \text{sinc}(k_y \Delta_m/2)} [100 \text{sinc}(5k_x \Delta_m) \text{sinc}(5k_y \Delta_m) - 4 \text{sinc}(k_x \Delta_m) \text{sinc}(k_y \Delta_m)]
\]

\[
\log_{10} \left[\tilde{M}(k_x, k_y)^2 \right]
\]

16.528 Mpc \sim 11' \hspace{1cm} d = 1.252 Mpc \sim 50"

$\Delta_m = 2.337$ Mpc

Shot has to be "as uniform as possible"!
Effect on power spectrum

\[\frac{\langle |F(k)|^2 \rangle}{W^2} = \int \frac{d^3q}{(2\pi)^3} \frac{|W(k - q)|^2}{W^2} P(q) \]
Result I. constant number density
Result II. After angular selection

Theoretically convolved power spectrum

Nyquist/2

aliasing??

power spectrum $[\text{Mpc}^3]$

wavenumber $[1/\text{Mpc}]$
Things to do by the mid August

- 2D angular-window function from direct FT
- “more” uniform shot? Or “more” random shot?
- angular + radial selection
- Including FKP optimal weighting
- Effect of IFU dependent weighting
- Effect of stochastic things (cloud, etc)
- Effect of HET scanning pattern (inducing correlation?)
- Effect of survey geometry (42*10? 84*5?)
- 2D (perpendicular, parallel) power spectrum
- Effect of anisotropic window to measure velocity power spectrum
- Effect of window function in the galaxy bispectrum
Contents

Introduction

Part I. Ideal galaxy power spectrum

Part II. A realistic galaxy power spectrum
 II.1. Entering the non-linear regime
 II.2. Survey Window function for HETDEX

Part III. More cosmology with HETDEX
 III.1. primordial non-Gaussianity and HETDEX
Primordial non-Gaussianity

- Well-studied parameterization is “local” non-Gaussianity:
 \[\Phi(x) = \phi(x) + f_{NL}(\phi^2(x) + \langle \phi^2 \rangle) \]

- Any detection of \(f_{NL} \) would rule out all the single field models regardless of the details of the model!

Current best measurement of \(f_{NL} \)
- From CMB (Komatsu et al, 2010)
 \[f_{NL} = 32 \pm 21 \ (68\% \ C.L.) \]
- From SDSS power spectra (Slosar et al, 2009)
 \[f_{NL} = 31^{+16}_{-27} \ (68\% \ C. \ L.) \]
Non-Gaussianity from HETDEX $P(k)$

\[P_g(k, \mu) = P_0 + \left[b + \frac{2f_{NL}\delta_c(b-1)}{M(k, z)} + f\mu^2 \right]^2 P_L(k) \]

\[M(k, z) = 2D(z)k^2T(k)/(3H_0^2\Omega_{m0}) \]

$\Delta f_{NL} = 21$, comparable to WMAP7!!
The galaxy bispectrum: definition

- Probability of finding three galaxies at separation \((r, s, t)\) is given by the two, and three-point correlation function

\[
P_3(r, s, t) = \bar{n}^3 (1 + \xi(r) + \xi(s) + \xi(t) + \zeta(r, s, t)) dV_1 dV_2 dV_3
\]

- \(B(k, k')\) is the Fourier transform of \(\zeta(r, s)\).

\[
B(k, k') = \int d^3r \int d^3s \zeta(r, s) e^{-i r \cdot k} e^{-i s \cdot k'}
\]

- Or, in terms of density contrast,

\[
\langle \delta(k_1)\delta(k_2)\delta(k_3) \rangle = (2\pi)^3 B(k_1, k_2, k_3) \delta^D(k_1 + k_2 + k_3)
\]
The galaxy bispectrum: theory

- The galaxy bispectrum consists of four pieces
 I. Matter bispectrum due to primordial non-Gaussianity
 II. Matter bispectrum due to non-linear gravitational evolution
 III. Non-linear galaxy bias
 IV. Non-Gaussianity term from peak correlation

\[B_g(k_1, k_2, k_3, z) = 3b_1^3 f_{NL} \Omega_m H_0^2 \left[\frac{P_m(k_1, z)}{k_1^2 T(k_1)} \frac{P_m(k_2, z)}{k_2^2 T(k_2)} \frac{k_3^2 T(k_3)}{D(z)} + (2 \text{ cyclic}) \right] + 2b_1^3 \left[F_2^{(s)}(k_1, k_2) P_m(k_1, z) P_m(k_2, z) + (2 \text{ cyclic}) \right] + b_1^2 b_2 \left[P_m(k_1, z) P_m(k_2, z) + (2 \text{ cyclic}) \right] + b_1^3 \frac{\delta_c}{2\sigma_R^2} \int \frac{d^3 q}{(2\pi)^3} T_R(q, k_1 - q, k_2, k_3) + (2 \text{ cyclic}) \]
Triangles

(a) squeezed triangle
\(k_1 \approx k_2 >> k_3 \)

(b) elongated triangle
\(k_1 = k_2 + k_3 \)

(c) folded triangle
\(k_1 = 2k_2 = 2k_3 \)

(d) isosceles triangle
\(k_1 > k_2 = k_3 \)

(e) equilateral triangle
\(k_1 = k_2 = k_3 \)
Bispectrum of Gaussian Universe

- We can measure bias from Equilateral and Folded triangles:
 \[\Delta b_1/b_1 = 0.01, \, \Delta b_2/b_2 = 0.05 \]

Bispectrum from non-linear gravitational evolution

Bispectrum from non-linear galaxy bias
Squeezed limit is the cleanest window to primordial non-Gaussianity

Jeong & Komatsu (2009b)
Bispectrum of non-Gaussian Universe II

• From HETDEX bispectrum, we can measure primordial non-Gaussianity better than Planck, $\Delta f_{NL} = 4.5$!

Bispectrum from primordial non-Gaussianity

Jeong & Komatsu (2009b)
Conclusion

• **Theory is ready for analyzing HETDEX power spectrum.**
• I am working on making a pipeline from HETDEX data to the power spectrum and bispectrum.
• Beyond power spectrum, we can extract more information from the galaxy bispectrum: e.g. bias parameter, primordial non-Gaussianity.
• **Theory is not (yet) ready for analyzing HETDEX bispectrum. This will be my next work.**
What’s next?

• Cahill Center for Astronomy Astrophysics at Caltech
Thank you!
Zheng Zheng effect

- Recent Lyman-alpha Radiative transfer simulation shows the environment (density, velocity gradient) dependence effect

Note!!!!
Number density of LAEs = 50 HETDEX
Zheng et al. (2010)
Is this effect important for HETDEX?

- The effect is smaller for small number density of LAEs! n(LAEs) for HETDEX is **2.4E-4 [Mpc/h]^3**
- What about at HETDEX redshifts, and on large scales?
- A working group inside of HETDEX collaboration formed: DJ, Eiichiro Komatsu, Jens Niemeyer, Ariel Sanchez
HETDEX and CMB lensing

Unlensed

Lensed

Picture from Hu & Okamoto (2001)
HETDEX is at the sweet spot!

- Convergence power spectrum of CMB is given by

$$C_{\ell}^{\kappa\kappa} = \frac{9}{4} \Omega_m^2 H_0^4 \int \frac{dz}{z} D(z) \left(1 + \frac{z}{H(z)} \right)^2 \left(\frac{d_A(z; z_{LSS})}{d_A(z_{LSS})}\right)^2 P_m \left(k = \frac{l}{d_A(z)}\right)$$

$$\equiv \frac{9}{4} \Omega_m^2 H_0^4 \int \frac{dz}{z} K(z) P_m \left(k = \frac{l}{d_A(z)}\right),$$
HETDEX-lensing cross correlation

- We can measure the linear bias parameters with $\Delta b_1/b_1 \sim 0.1$, but may not be useful for f_{NL} as $\Delta f_{NL} \sim 200$

But, this figure is for Full-sky HETDEX! For $f_{\text{sky}}=0.01$ (real HETDEX), $\Delta b_1/b_1 \sim 1$. It will be reduced as more “effective lens redshifts” are included!