Homework #3: Due Sept. 19, 2008

1. Show that the following sequences have the indicated limits using only the definition of a limit.

 (a) \(\lim_{n \to \infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \cdots + \frac{n}{n^2} \right) = \frac{1}{2}. \)

 (b) \(\lim_{n \to \infty} \left(\sqrt{n^2 - 1} - n \right) = 0. \)

2. For a given constant \(a > 0 \), show that \(a_n = \frac{a^n}{n!} \) is “eventually” strictly decreasing. In other words, show that there exists an \(N \) such that \(a_n > a_{n+1} \) for all \(n > N \). The value of \(N \) will depend on the value \(a \).

3. Show that if \(\{a_n\} \) is bounded, then \(\{|a_n|\} \) is bounded. Make sure you explain how the upper and lower bounds for \(|a_n| \) are related to the bounds for \(a_n \). Do not use zero as a lower bound for \(|a_n| \).

4. Show that if \(\lim_{n \to \infty} a_n = 2 \) then \(\lim_{n \to \infty} a_n^2 = 4 \) using only the definition of a limit. Hint: Since \(\{a_n\} \) converges, you know that \(\{a_n\} \) must be bounded.