Chapter 1 - The Nature of Light

David J. Starling
Penn State Hazleton
PHYS 214
Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy.
Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy.

Visible light is only a small portion of the EM spectrum.
Electromagnetic radiation is a traveling wave that can be created with an antenna.
Electromagnetic radiation is a traveling wave that can be created with an antenna.

Oscillating electrons in the antenna create an oscillating EM wave that travels out in all directions.
The electric and magnetic fields are perpendicular to each other and are transverse to the direction of propagation.
The electric and magnetic fields are perpendicular to each other and are transverse to the direction of propagation. This is called a transverse wave and the “polarization” points along the electric field.
The wave’s direction is given by the Poynting vector:

\[\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} \]

(1)
The wave’s direction is given by the Poynting vector:

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$ \hspace{1cm} (1)$$

The Poynting vector \vec{S} gives the energy per time per area that the EM wave transmits.
The speed of an electromagnetic wave is constant (in vacuum) and is given by

\[c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 3.0 \times 10^8 \text{ m/s} \]
The speed of an electromagnetic wave is constant (in vacuuum) and is given by

\[c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 3.0 \times 10^8 \text{ m/s} \]

In a material, use the material’s permitivity \(\varepsilon \) instead of \(\varepsilon_0 \). For example, in water, \(v_l = 2.25 \times 10^8 \text{ m/s} \).
As the wave travels past a point in space, the electric and magnetic fields oscillate in phase.
The oscillations of the EM wave tend to be sinusoidal:

\[E(x, t) = E_m \sin(kx - \omega t) \]
\[B(x, t) = B_m \sin(kx - \omega t) \]
The oscillations of the EM wave tend to be sinusoidal:

\[
E(x, t) = E_m \sin(kx - \omega t) \\
B(x, t) = B_m \sin(kx - \omega t)
\]

Recall that the speed of a traveling wave is given by \(c = \omega/k \) and that \(k = 2\pi/\lambda \) is the spatial frequency.
Energy and Pressure

Using the Poynting vector, we can calculate the average rate of energy transmitted by plane waves for a unit area:

\[
I = \langle \frac{E}{\mu_0}B \rangle \\
= \langle \frac{E}{\mu_0} \frac{E}{c} \rangle \\
= \langle \frac{E^2}{\mu_0 c} \rangle \\
= \frac{1}{2c\mu_0}E_m^2
\]
Using the Poynting vector, we can calculate the average rate of energy transmitted by plane waves for a unit area:

\[
I = \left\langle \frac{E}{\mu_0} B \right\rangle \\
= \left\langle \frac{E}{\mu_0} \frac{E}{c} \right\rangle \\
= \left\langle \frac{E^2}{\mu_0 c} \right\rangle \\
= \frac{1}{2c\mu_0} E_m^2
\]

For plane waves, Maxwell’s Equations require \(B = E/c \).
Intensity is a measure of how much power is concentrated into a certain area:

\[I = \frac{\text{power}}{\text{area}} \]
Intensity is a measure of how much power is concentrated into a certain area:

\[I = \frac{\text{power}}{\text{area}} \]

For a spherical wave, \(I = \frac{P}{4\pi r^2} \).
Energy and Pressure

Power and force are related by speed \((P = Fv)\), and this relationship holds for light as well.

\[
F = \frac{P}{c} = \frac{IA}{c}
\]

Absorption

Reflection
Energy and Pressure

Power and force are related by speed \((P = Fv)\), *and this relationship holds for light as well.*

\[
F = \frac{P}{c} = \frac{IA}{c}
\]

If the light is reflected, then force is doubled: \(F = 2IA/c\).
Energy and Pressure

This force can result in a pressure, known as radiation pressure \((p_r = F/A)\):

\[
p_r = \frac{I}{c}
\]
Energy and Pressure

This force can result in a pressure, known as radiation pressure \((p_r = F/A)\):

\[
p_r = \frac{I}{c}
\]

If the light is reflected, then pressure is doubled: \(p_r = 2I/c\).
Lecture Question 1.1
Monochromatic electromagnetic radiation illuminates a surface. The electric and magnetic fields of the waves are then doubled in magnitude. How is the total energy incident on the surface, per unit time, affected by this increase?

(a) The total energy is not affected by this change.
(b) The total energy will increase by a factor of two.
(c) The total energy will increase by a factor of four.
(d) The total energy will decrease by a factor of two.
(e) The total energy will decrease by a factor of four.
The direction of the electric field is the direction of polarization of the EM wave.
The direction of the electric field is the direction of polarization of the EM wave.

However, the direction of the polarization may change with time, resulting in a variety of possibilities.
Linearly polarized light means the polarization direction is a constant in time.

Vertically polarized light headed toward you–the electric fields are all vertical.
Linearly polarized light means the polarization direction is a constant in time.

Vertically polarized light headed toward you—the electric fields are all vertical.

Light coming from most lasers is linearly polarized.
Unpolarized light means the polarization direction changes randomly in time.
Unpolarized light means the polarization direction changes randomly in time.

Unpolarized light headed toward you—the electric fields are in all directions in the plane.

Light coming from fire or the sun is unpolarized.
Circularly polarized light means the polarization direction rotates in a circle at a constant rate.
Circularly polarized light means the polarization direction rotates in a circle at a constant rate.

This can be created with optics in a lab.
Elliptically polarized light means the electric field rotates, tracing out an ellipse.
Elliptically polarized light means the electric field rotates, tracing out an ellipse.

This can also be created with optics in a lab.
When light passes through a linear polarizer, only some of the light is transmitted.
When light passes through a linear polarizer, only some of the light is transmitted.

For unpolarized light, the light that passes through becomes linearly polarized and its intensity drops to

$$I = I_0/2$$
The light always takes on the polarization direction of the polarizing material.
The light always takes on the polarization direction of the polarizing material.

The intensity always drops as

\[I = I_0 \cos^2(\theta) \]

where \(\theta \) is the angle between the light’s polarization and the polarizer.
Lecture Question 1.2

Unpolarized light with intensity S is incident on a series of polarizing sheets. The first sheet has its transmission axis oriented at 0°. A second polarizer has its transmission axis oriented at 45° and a third polarizer oriented with its axis at 90°. Determine the fraction of light intensity exiting the third sheet with and without the second sheet present.

(a) $S/2$, S

(b) $S/2$, 0

(c) $S/4$, 0

(d) $S/3$, $S/2$

(e) S, $S/2$
When light interacts with a surface, it can reflect off of or refract into the material.
Reflection and Refraction

When light interacts with a surface, it can reflect off of or refract into the material.

How does the light behave? (Can derive completely from Maxwell’s Equations...)
A reflected ray lies in the plane of incidence and has an angle of reflection equal to the angle of incidence.

\[\theta_1 = \theta'_1 \]
A reflected ray lies in the plane of incidence and has an angle of reflection equal to the angle of incidence.

\[\theta_1 = \theta'_1 \]

This is the Law of Reflection.
Reflection and Refraction

A refracted ray lies in the plane of incidence and has an angle of refraction θ_2 related to the angle of incidence θ_1 by

$$n_2 \sin \theta_2 = n_1 \sin \theta_1 \text{ (Snell’s Law)}$$

If the indexes match, there is no direction change.

If the next index is greater, the ray is bent toward the normal.

If the next index is less, the ray is bent away from the normal.
A refracted ray lies in the plane of incidence and has an angle of refraction θ_2 related to the angle of incidence θ_1 by

$$n_2 \sin \theta_2 = n_1 \sin \theta_1 \text{ (Snell’s Law)}$$

n is the index of refraction and is related to the speed of light in the material ($v_1 = c/n_1$).
Reflection and Refraction

Snell’s Law results in total internal reflection when light shines from high index \((n_1)\) to low index \((n_2)\).

\[
 n_2 \sin 90^\circ = n_1 \sin \theta_c \rightarrow \theta_c = \sin^{-1}(n_2/n_1)
\]

If the next index is lower and the incident angle is large enough, the light can be trapped inside.
Reflection and Refraction

Snell’s Law results in total internal reflection when light shines from high index \((n_1)\) to low index \((n_2)\).

\[n_2 \sin 90° = n_1 \sin \theta_c \rightarrow \theta_c = \sin^{-1} \left(\frac{n_2}{n_1} \right) \]

At this critical angle, all light is reflected. (e.g. in a pool, or a fiber optic cable)
For every material, the index of refraction varies with the color of light. This gives rise to chromatic dispersion.

Blue is always bent more than red.
For every material, the index of refraction varies with the color of light. This gives rise to chromatic dispersion.

This is the principle behind prisms and rainbows.
Water droplets act as a dispersive material for sunlight and a rainbow forms given a certain geometry.
Water droplets act as a dispersive material for sunlight and a rainbow forms given a certain geometry.

Inside the droplet the light refracts, is totally internally reflected and then refracts again.
When unpolarized light reflects off of a surface at the Brewster angle θ_B, it becomes polarized in the plane of the surface.

$$\theta_B = \tan^{-1}\left(\frac{n_2}{n_1}\right)$$
When unpolarized light reflects off of a surface at the Brewster angle θ_B, it becomes polarized in the plane of the surface.

$$\theta_B = \tan^{-1}\left(\frac{n_2}{n_1}\right)$$

This is the result of solving Maxwell’s Equations at the boundary.
Lecture Question 1.3
Is light bent more, less, or not at all when entering a medium with a smaller index of refraction than that of the incident medium?

- (a) more
- (b) less
- (c) not at all