Accuracy and Uncertainty in Shading Calculations for Solar Power

Robert Vitagliano, Mauro Notaro, Dr. Joseph Ranalli and Dr. David Starling

Importance of Project

- How much do measurement errors of the horizon affect the estimation of the annual energy production?
 - Upfront costs deter the use of alternative energy
 - This issue can be addressed by maximizing the output energy of solar panels
 - Simulations can predict the output power at a location
 - Local obstructions on the horizon cause shading, reducing the output
 - We consider the reductions in production due to virtual horizons with simulated measurement error

Testing for Shading

- Shading
 - Portions of sunchart covered by objects represent shaded hours
 - Area not covered by the object represents unshaded hours
- How are calculations done?
 - Identify whole hours when shading occurs
 - Compute fractional hour by interpolation
 - Feed shading data into SAM
- What did we look for?
 - Reductions in annual energy output due to shading
 - Effects of variable horizon center, width, and height values
 - Sensitivity to movements in the obstacle position

SAM and Java Implementation

- System Advisor Model (SAM) simulates photovoltaic systems
 - Irradiance on the collector
 - Electrical power generated
 - Expected payback time
- Developed Java application using SAM to simulate
 - Variable horizon shape
 - Variable horizon center, width, and height values

Definitions and Terms

- **Horizon Profile** - object locations that will potentially shade the panel
 - Used two generic horizon profiles: rectangular and parabolic
 - Simplified profiles provide building blocks for complex horizons
- **Sunchart** - visual representation of the sun’s path in the sky throughout the year

Varying Centerline, Width, and Height

- Varied the centers in fine increments
- Normalized the results and scaled the graphs to compare directly
- Sharp peaks in the data represent object edges entering and exiting the sun’s path
 - 60° center-line and 150° center-line have the steepest slopes
- Larger slope results in higher output error due to position error
- Measured the change in output power by varying:
 - The height of the obstacle (Graph 2)
 - The width of the obstacle (Graph 3)

Results and Conclusion

- Center is the most sensitive to error
- Larger objects lead to higher sensitivity
- 0.056 percent per degree (%/deg) was the highest sensitivity observed
- Analysis quantifies the sensitivity of the output to each parameter

Future Plans

- Include meteorological data as another parameter
- Create a horizon profile using real-world observations
- Use various horizon survey tools and compare their uncertainties

References