Illustrating and constructing the multi-scale mapping process

Michael Stryker Robert E. Roth Cindy A. Brewer
Penn State University

Outline

- Origins of the ScaleMaster.org project
- Background on the challenges of multiscale mapping process
- The ScaleMaster diagram
- Typology of multi-scale operators
- Interactive website for learning about ScaleMaster tool
- Future work

Beginnings

- Originally sketched in 2003 during ESRI planning meetings by Charlie Frye, the ScaleMaster concept since has been formalized in a pair of publications (Brewer and Buttenfield 2007; Brewer et al. 2007).
- Primary objective of ScaleMaster tool: reduce the map maker's workload in multiscale design

Utility of ScaleMaster tool

- Multi-scale map design requires the application of generalization map content to maintain map legibility at smaller scales
- Decision-making process is contingent upon data resolution, desired display scales, and map purpose
- Map generalization still not an automated process
- Tracking these decision points provides a means for judging the workload amongst alternatives for achieving the desired map quality

Workload in multi-scale map construction

Examining alternatives: geometric and symbology operators

a.Original compilation scale

Small map with features reduced to 20 percent of original size (final presentation size):

b1.

No modifications to display or geometry:

- symbol widths retained (1 pt coast line and 2 pt road line),
- feature details and locations retained

c1.

Modify display only:

- thinner road and coast lines,
- remove outline of marina area

d1.

Modify geometry:

- displace road.
- enlarge island and peninsula neck,
- eliminate small islands,

enlargement than d1),

- collapse marina area to point symbol

e1

Modify both display and geometry:

- thinner road (less width change than c1) and coast,
- displace road (less displacement than d1) and small inlets, enlarge island and peninsula neck (less
- simplify marina area (retain general shape) and remove area outline

Screen images of small maps enlarged to 200 percent:

b2.

c2.

d2.

e2.

ScaleMaster diagram: a schematic for organizing scale-dependent design specifications for a multi-scale mapping project

Elements of ScaleMaster Diagram

(courtesy of Jess Acosta)

Elements of ScaleMaster Diagram

(courtesy of Jess Acosta)

Elements of ScaleMaster Diagram

Elements of ScaleMaster Diagram

ScaleMaster.org site objectives

- Provide an interactive site for education on multi-scale mapping through three dynamically linked panels:
 - (1) a library of multi-scale mapping operators,
 - (2) a ScaleMaster diagram example for a multi-scale mapping project using all of these operators, and
 - (3) a pair of maps illustrating before-and-after designs for a userselected decision point on the ScaleMaster diagram.
- Provide an interface for constructing ScaleMaster diagrams – capturing the design decision points for scale dependent map specifications to
 - (1) Formalize cartographer's decisions about changing map scales
 - (2) Maintain consistency across multi-scale map products
 - (3) Guide organizations without on-site cartographic expertise
 - (4) Assist efforts in the design of Multi-Representational Databases (MRDB)

Typology of Multi-Scale Mapping Operators

Typology of Multi-Scale Mapping Operators

Geometry

Symbology

Content

- 1) aggregate
- 2) collapse
- 3) merge
- 4) displace
- 5) exaggerate
- 6) simplify
- 7) smooth

- 1) enhance
- 2) typify
- 3) adjust color
- 4) rotate
- 5) adjust pattern
- 6) adjust shape
- 7) adjust size
- 8) adjust transparency

- 1) reorder
- 2) reclassify
- 3) add
- 4) eliminate

ScaleMaster.org Learn module

Create Module

Exporting design specifications

Acknowledgements

- The generous support of the ORN Labs travel scholarship to allow us to present this work at GIScience 2008
- Carolyn Fish and Douglas Schoch for the multi-scale map designs of Portland
- Jess Acosta for ScaleMaster diagrams generated from her designs of Ada County

Thank you for your attention

For more information on the ScaleMaster.org project visit http://scalemaster.org/