Scalemaster: Multi-Scale Mapmaking from Multiple Database Resolutions and for Multiple Map Purposes

Cynthia A. Brewer, Pennsylvania State University
Barbara P. Buttenfield, University of Colorado—Boulder
Charlie Frye, ESRI—Redlands
Jessica Acosta, Penn State → ESRI

a.k.a. Cindy, babs, Charlie, Jess
ScaleMaster

Understand workload balance between

- **display** change (select, eliminate, symbolize)
- **geometry** change (simplify, aggregate, displace, collapse…)

Complement to European MRDB research

- reviewed in Brewer & Buttenfield (2007) in CaGIS
ScaleMaster

Understand workload balance
- using databases with different resolutions
- through a continuous range of scales
- for varied map purposes (topographic, zoning, soils, population)

Return to diagram details later…
Project context

Ada County government (Boise Idaho) ↔ ESRI
- clean an existing 1:5,000 base map database
- topographic and special purpose map products
- mapping scales 5K and smaller

1:5K and 1:1M map segments
Project context

Work that happens at CU-Boulder

- geodatabases for ScaleMaster
 - edit, clean and attribute Ada County data
 - create smaller scale geodatabases (Python, ModelBuilder)
 akin to LoDs (level-of-detail preprocessed databases)

See Buttenfield & Frye paper in *ICC2007 Proceedings*
Map examples at 1:5K, 15K, 30K, 100K, 200K, 700K
Example topo map at 1:30K from 1:5K data

RA Jess Acosta’s map sets:
Example topo map at 1:30K from 1:5K data

RA Jess Acosta’s map sets:
Designed for onscreen display
Prepared using ArcGIS 9.2 and Maplex (no convert to annotation)
Different map purposes with same base data

1:30K maps from 1:5K data
Different map purposes with same base data

1:30K maps from 1:5K data
Different map purposes with same base data

Topo
Zoning
Soils
Population density
ScaleMaster: Topographic Mapping

Hydrography:
- Hydro areas
- Hydro lines
- Hydro points
 - Areas
 - Lines

Physical:
- Summits
- Hillshade
- Vegetation
 - Summits
 - Landforms

Transportation:
- Roads

1:5K to 1:1M

Feature types grouped along vertical axis (hues)

Horizontal axis is log of scale

Low tech...Excel page
Symbols – wide bars
Labels – thinner bars
Bars extend through range that symbols/labels for feature are present
Geometry change marked by lightness change

features off map
14 types of design decisions for scale change

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>size change*</td>
</tr>
<tr>
<td>c</td>
<td>color change*</td>
</tr>
<tr>
<td>p</td>
<td>pattern change (e.g., dash, crosshatch)*</td>
</tr>
<tr>
<td>t</td>
<td>transparency change*</td>
</tr>
<tr>
<td>l</td>
<td>modify label appearance (e.g., bold, italic, character spacing, leading)</td>
</tr>
<tr>
<td>i</td>
<td>improve label positions in relation to nearby features or labels (e.g., overrun, remove duplicates, feature weighting)</td>
</tr>
<tr>
<td>o</td>
<td>on/off for aspect of symbol or label (e.g. remove outlines for areas with feature type still present)</td>
</tr>
</tbody>
</table>

* visual variables
14 types of design decisions for scale change

r – **reclassify** features by attribute (e.g. fewer categories)

f – **filter** by threshold on feature attribute (e.g., filter on size to remove small parks)

e – **eliminate** layer or eliminate by feature type (e.g., eliminate intermittent streams)

a – **add** layer or add by feature type (e.g., add labels for physiographic features classed as large)

x – change **layer order** in TOC (e.g., roads moved from beneath transparent area to above)

R – use **Representations** tools (e.g., set endings of dashes with full pattern)

G – **geometry** change (e.g., new data set or new layer with generalized features)
Procedure:
Design individual maps working randomly through scales, starting as new project on each, with same geodatabase, then examine designs in series.

Jess' designs:
Procedure:

Design individual maps working randomly through scales, starting as new project on each, with same geodatabase, then examine designs in series.

Jess' designs:

Total 122 map projects
Four map purposes at 1:150K

Topo

Soils

Zoning

Population
Potential as a GIS map design tool… ScaleBrewer?
Potential as a GIS map design tool… ScaleBrewer?

Click here to see styled feature set: e.g., roads with line styles by class.
Potential as a GIS map design tool…
ScaleBrewer?

Click here to see processing detail: e.g., aggregation tolerances in LoD
Potential as a GIS map design tool… ScaleBrewer?

Select to deliver:
- Table of specs
- .style file, .lyr file
- OGC SLD spec
Summary

Workload balance between

– **geometry** changes (simplify, displace, collapse, aggregate…)
– **display** changes (symbolize, select and eliminate)

You can design through an **entire** scale range with

– few data captures
– key geometry pairs (e.g., centerlines that correspond to polygons)
– few LoDs for sensitive feature types (e.g., hydrography)
Next steps

How general is ScaleMaster?

- Examine distributions of types of change through scale
 - assist design decisions
 - assist data download choices

- Establish effective workload that minimizes geometry change
 - reduce layer integration burdens
 - reduce processing time
 - different (cheaper) worker skills
Next steps

How general is ScaleMaster?

– Determine where preprocessed LoDs and new data captures most needed
 • reduce workload/cost
 • assist decision to incorporate others’ existing datasets (are data close enough to be considered redundant scale?)
Regular research meetings

Kiyoshi, babs, Charlie, Aileen, Clint, Jess

December 2006
in Redlands

ICC2007 Moscow, August 2007
Student acknowledgements

Research Assistants/Interns, 2005 to 2007:
PSU: Jessica Acosta, Mamata Akella, Zachary Tardivo
CU: Torrin Hultgren, Kiyoshi Yamashita, Anna Harman

Applied Cartographic Design, PSU undergrads, Spring 2006:
Steve Cline, Rosie Daley, Emily Dux, Derek Foll, Katie Holmes,
Allen Huber, Alex Krishchyunas, Adam Naito, Joe Palchak,
Ed Petronsky, Ryan Stoyek, Matt Sudac, Jessica Acosta (grad)

Cartography Seminar, PSU graduate students, Fall 2005:
Tanuka Bhowmick, Steve Gardner, Adrienne Gruver, Tania del Mar
López Marerro, Sohyun Park, Anthony Robinson, Steve Weaver
ESRI acknowledgements

Additional ESRI Collaborators:
Clint Brown, Aileen Buckley

Funding from ESRI: