Airports Through Scale

Katie Meckler
25 June 2013
GNIS: No Hierarchy
Effectiveness of Hierarchy
GNIS points

- Good names, but no possibility for effective hierarchy
USGS TNM Polygon Layer

- Some information for hierarchy, but no names
- Codes for individual runway polygons – multiple per airport
<table>
<thead>
<tr>
<th>Type</th>
<th>Location</th>
<th>Effective Date</th>
<th>District Of State</th>
<th>State Name</th>
<th>County</th>
<th>County State City</th>
<th>Facility Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRPORT</td>
<td>188</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>BALDWIN</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>DCU</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>LIMESTONE</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>12J</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>ESCambia</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>GZH</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>CONECUHU</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>BHM</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>JEFFERSON</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>EKY</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>JEFFERSON</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>7J</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>DALE</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>MOB</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>MOBILE</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>DHN</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>DALE</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>UKA</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>BALDWIN</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>HSV</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>MADISON</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>BFM</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>MOBILE</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>TOI</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>PIKE</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>AUC</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>AUBURN</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>79J</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>COVINGTON</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>MGM</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>MONTGOMERY</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>TCM</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>TUSCALOOSA</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>CQF</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>BALDWIN</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>MSL</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>COLBERT</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>EON</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>COFFEE</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>0J6</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>HENRY</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>ASN</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>ALABAMA</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>0SA</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>ALABAMA</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>SEM</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>ALABAMA</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>3A1</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>ALABAMA</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>EUF</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>ALABAMA</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>PRL</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>ALABAMA</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>MDQ</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>ALABAMA</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>ANB</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>ALABAMA</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>JFX</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>ALABAMA</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>ALX</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>ALABAMA</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>SCD</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>TALLADEGA</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>8A0</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>MARSHALL</td>
</tr>
<tr>
<td>AIRPORT</td>
<td>58A</td>
<td>8/7/2013</td>
<td>ASO</td>
<td>JAN</td>
<td>AL</td>
<td>ALABAMA</td>
<td>BALDWIN</td>
</tr>
</tbody>
</table>
Data Choices

• GNIS database for preferred USGS name
• FAA “NFDC Facilities” database for hierarchy
 • FAA is federal agency, dataset suitable for national mapping
 – NFDC is National Flight Data Center

• Reasons for choice:
 – FAA database has detailed information
 – More flexibility with hierarchy
 – USGS polygon layer for largest scale only
Lat/Long Conversion to Decimal Degrees (in NFDC table)

- **Latitude**
- **Longitude**

- FAA’s “ARP” is Airport Reference Point latitude/longitude in seconds in NAD 83 (coordinates self reported by airport)
- An ARP is the average of the latitude-longitude of each runway’s center
Differences between GNIS and FAA Coords

FAA is the average of the latitude-longitude of each runway’s center (ARP)

GNIS is topo map location?
Spatial Join (Airports)

- Target Feature: GNIS layer
 - Of type Airport, name does not contain %Heli%
- Join Feature: FAA Layer
 - Of type AIRPORT
- Join Operation: JOIN_ONE_TO_ONE
- Keep only points that have a join
- Match option: Closest
- Search radius: 5km
Spatial Join (Heliports)

- Target Feature: GNIS layer
 - Of type Heliport, name contains %Heli%
- Join Feature: FAA Layer
 - Of type HELIPORT
- Join Operation: JOIN_ONE_TO_ONE
- Keep only points that have a join
- Match option: Closest
- Search radius: 5km
Retained GNIS points without FAA match

• Merged combination of the two spatial joins
• Used Symmetrical Difference tool with original set of GNIS points and merge
• Contains GNIS points without an FAA equivalent
Main Hierarchy

• Airports: Based on FAA code assignments
 – 3 letters = major public-use airports (JFK)
 – 1 letter/2 digits = minor public-use airports (C35, 4A6, 51R)
 – 2 letters/1 digit = special-use locations and some minor public-use airports (5BK, 7AK)
 – 2 letters/2 digits = Private-use airports (CA40)

• Heliports
Airport Hierarchy

• Our airport classes:
 A = 3 letter code airports (Major Public)
 B = 1 letter/2 digit and 2 letters/1 digit (Minor Public)
 C = 2 letters/2 digits (Private)

• Achieved classification through Python coding sequence:
def classifyAirport(fieldValue):
 if len(fieldValue) == 4:
 # If it's four digits, it's a private airport:
 return "C"
 else:
 # Must be three digits.
 chars = set("0123456789")
 if any((c in chars) for c in fieldValue):
 # If it contains a numerical digit, it's a minor public airport:
 return "B"
 else:
 # If there's no numerical digits, it's a major public airport:
 return "A"
More hierarchy

“Operatio_7”

• Added attribute column
• Totals all operations
 – 6 types of operations
 • Local, International, Commuter, Commercial, Air Taxi, Military (carriers)
 – Activity is self reported by airports
 – Use for hierarchy beyond FAA codes
Final Attributes

<table>
<thead>
<tr>
<th>LocationID</th>
<th>FEATURE NA</th>
<th>ArptClass</th>
<th>Operatio_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>34CO</td>
<td>Sky Ranch Airport</td>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>RIL</td>
<td>Rifle Municipal Airport</td>
<td>A</td>
<td>8129</td>
</tr>
<tr>
<td>GWS</td>
<td>Glenwood Airport</td>
<td>A</td>
<td>20999</td>
</tr>
<tr>
<td>FNL</td>
<td>Loveland Airport</td>
<td>A</td>
<td>107360</td>
</tr>
<tr>
<td>LMO</td>
<td>Longmont Municipal Airport</td>
<td>A</td>
<td>99990</td>
</tr>
<tr>
<td>BDU</td>
<td>Boulder Municipal Airport</td>
<td>A</td>
<td>50582</td>
</tr>
<tr>
<td>ASE</td>
<td>Sardy Field</td>
<td>A</td>
<td>37615</td>
</tr>
<tr>
<td>CO48</td>
<td>Barnetts Field</td>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>APA</td>
<td>Arapahoe County Airport</td>
<td>A</td>
<td>283186</td>
</tr>
<tr>
<td>8CO9</td>
<td>Plane View Airfield</td>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>AJZ</td>
<td>Blake Field Airport</td>
<td>A</td>
<td>2910</td>
</tr>
<tr>
<td>ALB</td>
<td>Hopkins-Montrose County Airport</td>
<td>A</td>
<td>1672</td>
</tr>
<tr>
<td>1CO2</td>
<td>Williams Landing Strip</td>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>7V2</td>
<td>North Fork Valley Airport</td>
<td>B</td>
<td>4000</td>
</tr>
<tr>
<td>3CO0</td>
<td>Sky Island Ranch Airport</td>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>ANK</td>
<td>Salida Airport</td>
<td>A</td>
<td>9653</td>
</tr>
<tr>
<td>C24</td>
<td>Creede Airstrip</td>
<td>B</td>
<td>2000</td>
</tr>
<tr>
<td>AFF</td>
<td>Pine Valley Airport</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>COS</td>
<td>Peterson Field</td>
<td>A</td>
<td>153244</td>
</tr>
<tr>
<td>CO80</td>
<td>Fowler Airfield</td>
<td>C</td>
<td>2800</td>
</tr>
<tr>
<td>4V1</td>
<td>Spanish Peaks Airfield</td>
<td>B</td>
<td>3500</td>
</tr>
<tr>
<td>1CO5</td>
<td>Todd Airport</td>
<td>C</td>
<td>4440</td>
</tr>
<tr>
<td>7V9</td>
<td>Las Animas Airport</td>
<td>B</td>
<td>3000</td>
</tr>
<tr>
<td>K08</td>
<td>Romer Field</td>
<td>B</td>
<td>1460</td>
</tr>
</tbody>
</table>
Small Scale Problem

• Major Airport Class
• No hierarchy

• Shortfalls:
 – Too dense
 – Needs further hierarchy

[“ArptClass” = ‘A’]
Solution Attempt: Thresholds

• Use operations total to remove labels/points within category at smaller scales
 – Create thresholds using operations total
 – Example: Only Major Airports with Operatio_7 \(\geq 100,000\) will be represented at a scale of 1M
Small Scale Problem

- Major Airport Class
- Threshold with total operations

- Shortfalls:
 - Very clustered
 - Poor representation of spread
 - No systematic way to decide threshold values

[\text{"ArptClass"} = 'A' \text{ AND } \text{"Operatio_7"} \geq 100,000]
Best Solution: Rectangular Point Selection Ladder

• Selects airports to keep based on highest total of operations within a rectangle
 – Maintains spread of airports, rural vs. urban
 – Systematic way to create further hierarchy
• (Application of Paulo’s summit thinning tool)
Tool Application

• Tool’s scale parameter and map scale not matched to produce varied rectangle sizes and therefore different point densities
• Multiple runs to decide best point densities
• Ran from 50K up to 5M, with various scale choices in between

– Example: input scale parameter of 1,270,000 equates to 4” rectangles at 250K map scale and 2.5” rectangles at 400K
Through Scale

<table>
<thead>
<tr>
<th>SCALE</th>
<th>Public Major</th>
<th>Public Minor</th>
<th>Private</th>
<th>Heliport</th>
</tr>
</thead>
<tbody>
<tr>
<td>(24K)</td>
<td>all</td>
<td>all</td>
<td>all</td>
<td>all</td>
</tr>
<tr>
<td>(40K)</td>
<td>all</td>
<td>all</td>
<td>all</td>
<td>all</td>
</tr>
<tr>
<td>(60K)</td>
<td>all</td>
<td>all</td>
<td>all</td>
<td>all, but only with [FEATURE_NA]</td>
</tr>
<tr>
<td>(100K)</td>
<td>all</td>
<td>all</td>
<td>all</td>
<td>only [FEATURE_NA] on Operations > 0</td>
</tr>
<tr>
<td>(150K)</td>
<td>all</td>
<td>all</td>
<td>all</td>
<td>NOT ("ArptClass" = 'C' AND "Operatio_7" = 0)</td>
</tr>
<tr>
<td>(250K)</td>
<td>all</td>
<td>2" rectangles</td>
<td>4" rectangles</td>
<td></td>
</tr>
<tr>
<td>(400K)</td>
<td>2" rectangles</td>
<td>2.5" rectangles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(630K)</td>
<td>all</td>
<td>4" rectangles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1Mil)</td>
<td>3.5" rectangles</td>
<td>only [Location_ID] for represented points</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
24 K Polygon Layer
24 K Polygon Layer
<table>
<thead>
<tr>
<th>Public Major</th>
<th>Public Minor</th>
<th>Private</th>
<th>Heliport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point</td>
<td>Name</td>
<td>Point</td>
<td>Name</td>
</tr>
<tr>
<td>all</td>
<td>all</td>
<td>all</td>
<td>all</td>
</tr>
</tbody>
</table>

Table Of Contents

- UTM 15N NAD83
 - 1M4K
 - 620K
 - 400K
 - 250K
 - 150K
 - 100K
 - 60K
- Airports
 - ArpClass
 - MajorPub
 - MinorPub
 - Priv
- Heliports
- 24K
- VmapTexas
- ALL
- Rectangular Point Select
- Basemap
<table>
<thead>
<tr>
<th>Public Major</th>
<th>Public Minor</th>
<th>Private</th>
<th>Heliport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point</td>
<td>Name</td>
<td>Point</td>
<td>Name</td>
</tr>
<tr>
<td>all</td>
<td>all</td>
<td>all</td>
<td></td>
</tr>
</tbody>
</table>

All minor airports with the highest total operations in 4" rectangles

250K
400K

Public Major
- All major airports with the highest total operations in 2'' rectangles

Public Minor
- All minor airports with the highest total operations in 2.5'' rectangles

Private
- [Private Name]

Heliport
- [Heliport Name]

Table Of Contents
- UTM LSZ NAD83
- 1Mil
- 630K
- 400K
- Airports
 - ArptClass
 - MajorPub
 - MinorPub
 - Priv
- AirportsA_final_rect
- AirportsB_final_rect
- 250K
- 150K
- 100K
- 60K
- 40K
- 24K
- VmapTexas
- ALL
- Rectangular Point Select
- Basemap

Map Details
- West Houston Airport (HV S)
- William P. Hobby Airport (HOU)
- Ellington Field Airport (EFD)
- Sugar Land Regional Airport (SGR)
- Houston Southwest Airport (AXII)
- Pearland Regional Airport (LUV)
- Schueller International Airport (Galveston) (GLS)
All major airports with the highest total operations in 4" rectangles.

Table Of Contents:
- UTM 15N NAD83
 - 1MIL
 - 630K
 - Airports
 - ArptClass
 - MajorPub
 - MinorPub
 - Priv
 - AirportsA_final_rect
 - 400K
 - 250K
 - 150K
 - 100K
 - 60K
 - 40K
 - 24K
 - VmapTexas
 - ALL
 - Rectangular Point Select
 - Basemap

630K
All major airports with the highest total operations in 3.5" rectangles

only FAA Code for represented points
1M Comparison
Spatial Join Limitations

- Joining one-to-one based on distance allows inaccurate matches
- Combine name comparison with spatial join?
- Prevent multiple FAA Code assignments...
 ...but duplication is allowed by the FAA within airport boundaries

Or use FAA name
Recommendations

• Customizing Paulo’s tool from summits to airports
 – Average rectangle width used through scale: 3.2 inches (8.1 cm)
• Use accurate matching of GNIS name and coordinates with FAA Location ID and operations attributes
• Or use FAA name and coordinates instead
• Do not include GNIS points that are not in FAA tables
• Refine name/point decisions for each scale range with full map design