INTRODUCTION TO DIFFERENTIAL EQUATIONS

1.1 Definitions and Terminology
1.2 Initial-Value Problems
1.3 Differential Equations as Mathematical Models

CHAPTER 1 IN REVIEW

The words *differential* and *equations* certainly suggest solving some kind of equation that contains derivatives y', y'', \ldots. Analogous to a course in algebra and trigonometry, in which a good amount of time is spent solving equations such as $x^2 + 5x + 4 = 0$ for the unknown number x, in this course one of our tasks will be to solve differential equations such as $y'' + 2y' + y = 0$ for an unknown function $y = \phi(x)$.

The preceding paragraph tells something, but not the complete story, about the course you are about to begin. As the course unfolds, you will see that there is more to the study of differential equations than just mastering methods that someone has devised to solve them.

But first things first. In order to read, study, and be conversant in a specialized subject, you have to learn the terminology of that discipline. This is the thrust of the first two sections of this chapter. In the last section we briefly examine the link between differential equations and the real world. Practical questions such as *How fast does a disease spread? How fast does a population change?* involve rates of change or derivatives. As so the mathematical description—or mathematical model—of experiments, observations, or theories may be a differential equation.
1.1 DEFINITIONS AND TERMINOLOGY

REVIEW MATERIAL
- Definition of the derivative
- Rules of differentiation
- Derivative as a rate of change
- First derivative and increasing/decreasing
- Second derivative and concavity

INTRODUCTION
The derivative dy/dx of a function $y = \phi(x)$ is itself another function $\phi'(x)$ found by an appropriate rule. The function $y = e^{0.1x}$ is differentiable on the interval $(-\infty, \infty)$, and by the Chain Rule its derivative is $dy/dx = 0.2xe^{0.1x}$. If we replace $e^{0.1x}$ on the right-hand side of the last equation by the symbol y, the derivative becomes

$$\frac{dy}{dx} = 0.2xy.$$ (1)

Now imagine that a friend of yours simply hands you equation (1)—you have no idea how it was constructed—and asks, What is the function represented by the symbol y? You are now face to face with one of the basic problems in this course:

How do you solve such an equation for the unknown function $y = \phi(x)$?

A DEFINITION
The equation that we made up in (1) is called a differential equation. Before proceeding any further, let us consider a more precise definition of this concept.

DEFINITION 1.1.1 Differential Equation

An equation containing the derivatives of one or more dependent variables, with respect to one or more independent variables, is said to be a differential equation (DE).

To talk about them, we shall classify differential equations by type, order, and linearity.

CLASSIFICATION BY TYPE
If an equation contains only ordinary derivatives of one or more dependent variables with respect to a single independent variable it is said to be an ordinary differential equation (ODE). For example,

$$\frac{dy}{dx} + 5y = e^x, \quad \frac{d^2y}{dx^2} - \frac{dy}{dx} + 6y = 0, \quad \text{and} \quad \frac{dx}{dt} + \frac{dy}{dt} = 2x + y$$

are ordinary differential equations. An equation involving partial derivatives of one or more dependent variables of two or more independent variables is called a
partial differential equation (PDE). For example,
\[
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2} - 2\frac{\partial u}{\partial t}, \quad \text{and} \quad \frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}
\]
(3)
are partial differential equations.*

Throughout this text ordinary derivatives will be written by using either the Leibniz notation \(dy/dx, d^2y/dx^2, d^3y/dx^3, \ldots \) or the prime notation \(y', y'', y''', \ldots \). By using the latter notation, the first two differential equations in (2) can be written a little more compactly as \(y' + 5y = e^x \) and \(y'' - y' + 6y = 0 \). Actually, the prime notation is used to denote only the first three derivatives; the fourth derivative is written \(y^{(4)} \) instead of \(y'''' \). In general, the \(n \)th derivative of \(y \) is written \(d^n y/dx^n \) or \(y^{(n)} \).

Although less convenient to write and to typeset, the Leibniz notation has an advantage over the prime notation in that it clearly displays both the dependent and independent variables. For example, in the equation
\[
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0
\]
it is immediately seen that the symbol \(x \) now represents a dependent variable, whereas the independent variable is \(t \). You should also be aware that in physical sciences and engineering, Newton’s dot notation (derogatively referred to by some as the “flyspeck” notation) is sometimes used to denote derivatives with respect to time \(t \). Thus the differential equation \(d^2y/dt^2 = -32 \) becomes \(\ddot{y} = -32 \). Partial derivatives are often denoted by a subscript notation indicating the independent variables. For example, with the subscript notation the second equation in (3) becomes \(u_{xx} = u_{tt} - 2u_t \).

CLASSIFICATION BY ORDER The order of a differential equation (either ODE or PDE) is the order of the highest derivative in the equation. For example,
\[
\frac{d^2y}{dx^2} + 5\left(\frac{dy}{dx}\right) - 4y = e^x
\]
is a second-order ordinary differential equation. First-order ordinary differential equations are occasionally written in differential form \(M(x, y) \, dx + N(x, y) \, dy = 0 \). For example, if we assume that \(y \) denotes the dependent variable in \((y - x) \, dx + 4x \, dy = 0\), then \(y' = dy/dx \), so by dividing by the differential \(dx \), we get the alternative form \(4xy' + y = x \). See the Remarks at the end of this section.

In symbols we can express an \(n \)th-order ordinary differential equation in one dependent variable by the general form
\[
F(x, \ y, \ y', \ldots, y^{(n)}) = 0,
\]
(4)
where \(F \) is a real-valued function of \(n + 2 \) variables: \(x, y, \ldots, y^{(n)} \). For both practical and theoretical reasons we shall also make the assumption hereafter that it is possible to solve an ordinary differential equation in the form (4) uniquely for the

*Except for this introductory section, only ordinary differential equations are considered in *A First Course in Differential Equations with Modeling Applications*, Ninth Edition. In that text the word equation and the abbreviation DE refer only to ODEs. Partial differential equations or PDEs are considered in the expanded volume *Differential Equations with Boundary-Value Problems*, Seventh Edition.
highest derivative \(y^{(n)}\) in terms of the remaining \(n + 1\) variables. The differential equation

\[
\frac{d^n y}{dx^n} = f(x, y, y', \ldots, y^{(n-1)}),
\]

where \(f\) is a real-valued continuous function, is referred to as the normal form of (4). Thus when it suits our purposes, we shall use the normal forms

\[
\frac{dy}{dx} = f(x, y) \quad \text{and} \quad \frac{d^2 y}{dx^2} = f(x, y')
\]
to represent general first- and second-order ordinary differential equations. For example, the normal form of the first-order equation \(4xy' + y = x\) is \(y' = (x - y)/4x\); the normal form of the second-order equation \(y'' - y' + 6y = 0\) is \(y'' = y' - 6y\). See the Remarks.

CLASSIFICATION BY LINEARITY An \(n\)th-order ordinary differential equation (4) is said to be linear if \(F\) is linear in \(y, y', \ldots, y^{(n)}\). This means that an \(n\)th-order ODE is linear when (4) is

\[
a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1(x)y' + a_0(x)y = g(x) = 0 \quad \text{or} \quad \frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x). \tag{6}
\]

Two important special cases of (6) are linear first-order (\(n = 1\)) and linear second-order (\(n = 2\)) DEs:

\[
a_1(x)\frac{dy}{dx} + a_0(x)y = g(x) \quad \text{and} \quad a_2(x)\frac{d^2 y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x). \tag{7}
\]

In the additive combination on the left-hand side of equation (6) we see that the characteristic two properties of a linear ODE are as follows:

- The dependent variable \(y\) and all its derivatives \(y', y'', \ldots, y^{(n)}\) are of the first degree, that is, the power of each term involving \(y\) is 1.
- The coefficients \(a_0, a_1, \ldots, a_n\) of \(y, y', \ldots, y^{(n)}\) depend at most on the independent variable \(x\).

The equations

\[
(y - x)dx + 4x dy = 0, \quad y'' - 2y' + y = 0, \quad \text{and} \quad \frac{d^3 y}{dx^3} + x \frac{dy}{dx} - 5y = e^x
\]

are, in turn, linear first-, second-, and third-order ordinary differential equations. We have just demonstrated that the first equation is linear in the variable \(y\) by writing it in the alternative form \(4xy' + y = x\). A **nonlinear** ordinary differential equation is simply one that is not linear. Nonlinear functions of the dependent variable or its derivatives, such as \(\sin y\) or \(e^y\), cannot appear in a linear equation. Therefore

\[
(1 - y)y' + 2y = e^y, \quad \frac{d^2 y}{dx^2} + \sin y = 0, \quad \text{and} \quad \frac{d^2 y}{dx^2} + y^2 = 0
\]

are examples of nonlinear first-, second-, and fourth-order ordinary differential equations, respectively.

SOLUTIONS As was stated before, one of the goals in this course is to solve, or find solutions of, differential equations. In the next definition we consider the concept of a solution of an ordinary differential equation.
DEFINITION 1.1.2 Solution of an ODE

Any function \(\phi \), defined on an interval \(I \) and possessing at least \(n \) derivatives that are continuous on \(I \), which when substituted into an \(n \)th-order ordinary differential equation reduces the equation to an identity, is said to be a solution of the equation on the interval.

In other words, a solution of an \(n \)th-order ordinary differential equation (4) is a function \(\phi \) that possesses at least \(n \) derivatives and for which

\[
F(x, \phi(x), \phi'(x), \ldots, \phi^{(n)}(x)) = 0 \quad \text{for all } x \in I.
\]

We say that \(\phi \) satisfies the differential equation on \(I \). For our purposes we shall also assume that a solution \(\phi \) is a real-valued function. In our introductory discussion we saw that \(y = e^{0.1x^2} \) is a solution of \(dy/dx = 0.2xy \) on the interval \((-\infty, \infty)\).

Occasionally, it will be convenient to denote a solution by the alternative symbol \(y(x) \).

INTERVAL OF DEFINITION You cannot think solution of an ordinary differential equation without simultaneously thinking interval. The interval \(I \) in Definition 1.1.2 is variously called the interval of definition, the interval of existence, the interval of validity, or the domain of the solution and can be an open interval \((a, b)\), a closed interval \([a, b]\), an infinite interval \((a, \infty)\), and so on.

EXAMPLE 1 Verification of a Solution

Verify that the indicated function is a solution of the given differential equation on the interval \((-\infty, \infty)\).

(a) \(dy/dx = xy^{1/2}; \quad y = \frac{1}{16} x^4 \)
(b) \(y'' - 2y' + y = 0; \quad y = xe^x \)

SOLUTION One way of verifying that the given function is a solution is to see, after substituting, whether each side of the equation is the same for every \(x \) in the interval.

(a) From

\[
\begin{align*}
\text{left-hand side:} & \quad \frac{dy}{dx} = \frac{1}{16} (4 \cdot x^3) = \frac{1}{4} x^3, \\
\text{right-hand side:} & \quad xy^{1/2} = x \cdot \left(\frac{1}{16} x^4 \right)^{1/2} = x \cdot \left(\frac{1}{4} x^2 \right) = \frac{1}{4} x^3,
\end{align*}
\]

we see that each side of the equation is the same for every real number \(x \). Note that \(y^{1/2} = \frac{1}{2} x^2 \) is, by definition, the nonnegative square root of \(\frac{1}{16} x^4 \).

(b) From the derivatives \(y' = xe^x + e^x \) and \(y'' = xe^x + 2e^x \) we have, for every real number \(x \),

\[
\begin{align*}
\text{left-hand side:} & \quad y'' - 2y' + y = (xe^x + 2e^x) - 2(xe^x + e^x) + xe^x = 0, \\
\text{right-hand side:} & \quad 0.
\end{align*}
\]

Note, too, that in Example 1 each differential equation possesses the constant solution \(y = 0, -\infty < x < \infty \). A solution of a differential equation that is identically zero on an interval \(I \) is said to be a trivial solution.

SOLUTION CURVE The graph of a solution \(\phi \) of an ODE is called a solution curve. Since \(\phi \) is a differentiable function, it is continuous on its interval \(I \) of definition. Thus there may be a difference between the graph of the function \(\phi \) and the
The function \(y = 1/x, \) considered simply as a function, is the set of all real numbers \(x \) except 0. When we graph \(y = 1/x, \) we plot points in the \(xy \)-plane corresponding to a judicious sampling of numbers taken from its domain. The rational function \(y = 1/x \) is discontinuous at 0, and its graph, in a neighborhood of the origin, is given in Figure 1.1.1(a). The function \(y = 1/x \) is not differentiable at \(x = 0, \) since the \(y \)-axis (whose equation is \(x = 0 \)) is a vertical asymptote of the graph.

Now \(y = 1/x \) is also a solution of the linear first-order differential equation \(xy' + y = 0. \) (Verify.) But when we say that \(y = 1/x \) is a solution of this DE, we mean that it is a function defined on an interval \(I \) on which it is differentiable and satisfies the equation. In other words, \(y = 1/x \) is a solution of the DE on any interval that does not contain 0, such as \((-3, -1), \{1, 10\}, (-\infty, 0), \) or \((0, \infty)\). Because the solution curves defined by \(y = 1/x \) for \(-3 < x < -1 \) and \(1/2 < x < 10 \) are simply segments, or pieces, of the solution curves defined by \(y = 1/x \) for \(-\infty < x < 0 \) and \(0 < x < \infty \), respectively, it makes sense to take the interval \(I \) to be as large as possible. Thus we take \(I \) to be either \((-\infty, 0) \) or \((0, \infty)\). The solution curve on \((0, \infty)\) is shown in Figure 1.1.1(b).

EXAMPLE 2 Function versus Solution

The domain of \(y = 1/x \) is not the same as the interval \(I \) of definition (or domain) of the solution \(y = 1/x \). Example 2 illustrates the difference.

FIGURE 1.1.1 The function \(y = 1/x \) is not the same as the solution \(y = 1/x \)

EXPLICIT AND IMPLICIT SOLUTIONS You should be familiar with the terms explicit functions and implicit functions from your study of calculus. A solution in which the dependent variable is expressed solely in terms of the independent variable and constants is said to be an explicit solution. For our purposes, let us think of an explicit solution as an explicit formula \(y = \phi(x) \) that we can manipulate, evaluate, and differentiate using the standard rules. We have just seen in the last two examples that \(y = \frac{1}{16}x^4, \) \(y = xe^x, \) and \(y = 1/x \) are, in turn, explicit solutions of \(dy/dx = xy^{1/2}, y'^2 + y = 0, \) and \(xy' + y = 0. \) Moreover, the trivial solution \(y = 0 \) is an explicit solution of all three equations. When we get down to the business of actually solving some ordinary differential equations, you will see that methods of solution do not always lead directly to an explicit solution \(y = \phi(x). \) This is particularly true when we attempt to solve nonlinear first-order differential equations. Often we have to be content with a relation or expression \(G(x, y) = 0 \) that defines a solution \(\phi \) implicitly.

DEFINITION 1.1.3 Implicit Solution of an ODE

A relation \(G(x, y) = 0 \) is said to be an implicit solution of an ordinary differential equation (4) on an interval \(I, \) provided that there exists at least one function \(\phi \) that satisfies the relation as well as the differential equation on \(I. \)

It is beyond the scope of this course to investigate the conditions under which a relation \(G(x, y) = 0 \) defines a differentiable function \(\phi. \) So we shall assume that if the formal implementation of a method of solution leads to a relation \(G(x, y) = 0, \) then there exists at least one function \(\phi \) that satisfies both the relation (that is, \(G(x, \phi(x)) = 0 \)) and the differential equation on an interval \(I. \) If the implicit solution \(G(x, y) = 0 \) is fairly simple, we may be able to solve for \(y \) in terms of \(x \) and obtain one or more explicit solutions. See the Remarks.
and two explicit solutions of $xy = \frac{4}{2}$.

FIGURE 1.1.2 Some solutions of $xy = \frac{4}{2}$.

(a) implicit solution

\[
x^2 + y^2 = 25
\]

(b) explicit solution

\[
y_1 = \sqrt{25 - x^2}, \quad -5 < x < 5
\]

(c) explicit solution

\[
y_2 = -\sqrt{25 - x^2}, \quad -5 < x < 5
\]

FIGURE 1.1.2 An implicit solution and two explicit solutions of $y' = -x/y$.

EXAMPLE 3 Verification of an Implicit Solution

The relation $x^2 + y^2 = 25$ is an implicit solution of the differential equation

\[
\frac{dy}{dx} = -\frac{x}{y}
\]

on the open interval $(-5, 5)$. By implicit differentiation we obtain

\[
\frac{d}{dx} x^2 + \frac{d}{dx} y^2 = \frac{d}{dx} 25 \quad \text{or} \quad 2x + 2y \frac{dy}{dx} = 0.
\]

Solving the last equation for the symbol dy/dx gives (8). Moreover, solving $x^2 + y^2 = 25$ for y in terms of x yields $y = \pm \sqrt{25 - x^2}$. The two functions $y = \phi_1(x) = \sqrt{25 - x^2}$ and $y = \phi_2(x) = -\sqrt{25 - x^2}$ satisfy the relation (that is, $x^2 + \phi_1^2 = 25$ and $x^2 + \phi_2^2 = 25$) and are explicit solutions defined on the interval $(-5, 5)$. The solution curves given in Figures 1.1.2(b) and 1.1.2(c) are segments of the graph of the implicit solution in Figure 1.1.2(a).

Any relation of the form $x^2 + y^2 - c = 0$ formally satisfies (8) for any constant c. However, it is understood that the relation should always make sense in the real number system; thus, for example, if $c = -25$, we cannot say that $x^2 + y^2 + 25 = 0$ is an implicit solution of the equation. (Why not?) Because the distinction between an explicit solution and an implicit solution should be intuitively clear, we will not belabor the issue by always saying, “Here is an explicit (implicit) solution.”

FAMILIES OF SOLUTIONS The study of differential equations is similar to that of integral calculus. In some texts a solution ϕ is sometimes referred to as an integral of the equation, and its graph is called an integral curve. When evaluating an antiderivative or indefinite integral in calculus, we use a single constant c of integration. Analogously, when solving a first-order differential equation $F(x, y, y') = 0$, we usually obtain a solution containing a single arbitrary constant or parameter c. A solution containing an arbitrary constant represents a set $G(x, y, c) = 0$ of solutions called a one-parameter family of solutions. When solving an nth-order differential equation $F(x, y, y', \ldots, y^{(n)}) = 0$, we seek an n-parameter family of solutions $G(x, y, c_1, c_2, \ldots, c_n) = 0$. This means that a single differential equation can possess an infinite number of solutions corresponding to the unlimited number of choices for the parameter(s). A solution of a differential equation that is free of arbitrary parameters is called a particular solution. For example, the one-parameter family $y = cx - x \cos x$ is an explicit solution of the linear first-order equation $xy' - y = x^2 \sin x$ on the interval $(-\infty, \infty)$. (Verify.) Figure 1.1.3, obtained by using graphing software, shows the graphs of some of the solutions in this family. The solution $y = -x \cos x$, the blue curve in the figure, is a particular solution corresponding to $c = 0$. Similarly, on the interval $(-\infty, \infty)$, $y = c_1 e^x + c_2 xe^x$ is a two-parameter family of solutions of the linear second-order equation $y'' - 2y' + y = 0$ in Example 1. (Verify.) Some particular solutions of the equation are the trivial solution $y = 0$ ($c_1 = c_2 = 0$), $y = xe^x$ ($c_1 = 0$, $c_2 = 1$), $y = 5e^x - 2xe^x$ ($c_1 = 5$, $c_2 = -2$), and so on.

Sometimes a differential equation possesses a solution that is not a member of a family of solutions of the equation—that is, a solution that cannot be obtained by specializing any of the parameters in the family of solutions. Such an extra solution is called a singular solution. For example, we have seen that $y = \frac{1}{12} x^4$ and $y = 0$ are solutions of the differential equation $dy/dx = xy^{1/2}$ on $(-\infty, \infty)$. In Section 2.2 we shall demonstrate, by actually solving it, that the differential equation $dy/dx = xy^{1/2}$ possesses the one-parameter family of solutions $y = (\frac{1}{3} x^2 + c)^{1/2}$. When $c = 0$, the resulting particular solution is $y = \frac{1}{12} x^4$. But notice that the trivial solution $y = 0$ is a singular solution, since...
it is not a member of the family \(y = \left(\frac{1}{4}x^2 + c \right)^2 \); there is no way of assigning a value to the constant \(c \) to obtain \(y = 0 \).

In all the preceding examples we used \(x \) and \(y \) to denote the independent and dependent variables, respectively. But you should become accustomed to seeing and working with other symbols to denote these variables. For example, we could denote the independent variable by \(t \) and the dependent variable by \(x \).

EXAMPLE 4 Using Different Symbols

The functions \(x = c_1 \cos 4t \) and \(x = c_2 \sin 4t \), where \(c_1 \) and \(c_2 \) are arbitrary constants or parameters, are both solutions of the linear differential equation

\[x'' + 16x = 0. \]

For \(x = c_1 \cos 4t \) the first two derivatives with respect to \(t \) are \(x' = -4c_1 \sin 4t \) and \(x'' = -16c_1 \cos 4t \). Substituting \(x'' \) and \(x \) then gives

\[x'' + 16x = -16c_1 \cos 4t + 16(c_1 \cos 4t) = 0. \]

In like manner, for \(x = c_2 \sin 4t \) we have \(x'' = -16c_2 \sin 4t \), and so

\[x'' + 16x = -16c_2 \sin 4t + 16(c_2 \sin 4t) = 0. \]

Finally, it is straightforward to verify that the linear combination of solutions, or the two-parameter family \(x = c_1 \cos 4t + c_2 \sin 4t \), is also a solution of the differential equation.

The next example shows that a solution of a differential equation can be a piecewise-defined function.

EXAMPLE 5 A Piecewise-Defined Solution

You should verify that the one-parameter family \(y = cx^4 \) is a one-parameter family of solutions of the differential equation \(xy' - 4y = 0 \) on the interval \((-\infty, \infty) \). See Figure 1.1.4(a). The piecewise-defined differentiable function

\[
y = \begin{cases}
-x^4, & x < 0 \\
-x^4, & x \geq 0
\end{cases}
\]

is a particular solution of the equation but cannot be obtained from the family \(y = cx^4 \) by a single choice of \(c \); the solution is constructed from the family by choosing \(c = -1 \) for \(x < 0 \) and \(c = 1 \) for \(x \geq 0 \). See Figure 1.1.4(b).

SYSTEMS OF DIFFERENTIAL EQUATIONS Up to this point we have been discussing single differential equations containing one unknown function. But often in theory, as well as in many applications, we must deal with systems of differential equations. A **system of ordinary differential equations** is two or more equations involving the derivatives of two or more unknown functions of a single independent variable. For example, if \(x \) and \(y \) denote dependent variables and \(t \) denotes the independent variable, then a system of two first-order differential equations is given by

\[
\frac{dx}{dt} = f(t, x, y) \\
\frac{dy}{dt} = g(t, x, y).
\]

\[\text{(9)} \]
A solution of a system such as (9) is a pair of differentiable functions \(x = \phi_1(t), \ y = \phi_2(t) \), defined on a common interval \(I \), that satisfy each equation of the system on this interval.

REMARKS

(i) A few last words about implicit solutions of differential equations are in order. In Example 3 we were able to solve the relation \(x^2 + y^2 = 25 \) for \(y \) in terms of \(x \) to get two explicit solutions, \(\phi_1(x) = \sqrt{25 - x^2} \) and \(\phi_2(x) = -\sqrt{25 - x^2} \), of the differential equation (8). But don’t read too much into this one example. Unless it is easy or important or you are instructed to, there is usually no need to try to solve an implicit solution \(G(x, y) = 0 \) for \(y \) explicitly in terms of \(x \). Also do not misinterpret the second sentence following Definition 1.1.3. An implicit solution \(G(x, y) = 0 \) can define a perfectly good differentiable function \(\phi \) that is a solution of a DE, yet we might not be able to solve \(G(x, y) = 0 \) using analytical methods such as algebra. The solution curve of \(\phi \) may be a segment or piece of the graph of \(G(x, y) = 0 \). See Problems 45 and 46 in Exercises 1.1. Also, read the discussion following Example 4 in Section 2.2.

(ii) Although the concept of a solution has been emphasized in this section, you should also be aware that a DE does not necessarily have to possess a solution. See Problem 39 in Exercises 1.1. The question of whether a solution exists will be touched on in the next section.

(iii) It might not be apparent whether a first-order ODE written in differential form \(M(x, y)dx + N(x, y)dy = 0 \) is linear or nonlinear because there is nothing in this form that tells us which symbol denotes the dependent variable. See Problems 9 and 10 in Exercises 1.1.

(iv) It might not seem like a big deal to assume that \(F(x, y, y', \ldots, y^{(n)}) = 0 \) can be solved for \(y^{(n)} \), but one should be a little bit careful here. There are exceptions, and there certainly are some problems connected with this assumption. See Problems 52 and 53 in Exercises 1.1.

(v) You may run across the term closed form solutions in DE texts or in lectures in courses in differential equations. Translated, this phrase usually refers to explicit solutions that are expressible in terms of elementary (or familiar) functions: finite combinations of integer powers of \(x \), roots, exponential and logarithmic functions, and trigonometric and inverse trigonometric functions.

(vi) If every solution of an \(n \)th-order ODE \(F(x, y, y', \ldots, y^{(n)}) = 0 \) on an interval \(I \) can be obtained from an \(n \)-parameter family \(G(x, y, c_1, c_2, \ldots, c_n) = 0 \) by appropriate choices of the parameters \(c_i, i = 1, 2, \ldots, n \), we then say that the family is the general solution of the DE. In solving linear ODEs, we shall impose relatively simple restrictions on the coefficients of the equation; with these restrictions one can be assured that not only does a solution exist on an interval but also that a family of solutions yields all possible solutions. Nonlinear ODEs, with the exception of some first-order equations, are usually difficult or impossible to solve in terms of elementary functions. Furthermore, if we happen to obtain a family of solutions for a nonlinear equation, it is not obvious whether this family contains all solutions. On a practical level, then, the designation “general solution” is applied only to linear ODEs. Don’t be concerned about this concept at this point, but store the words “general solution” in the back of your mind—we will come back to this notion in Section 2.3 and again in Chapter 4.
EXERCISES 1.1

In Problems 1–8 state the order of the given ordinary differential equation. Determine whether the equation is linear or nonlinear by matching it with (6).

1. \((1 - x)y'' - 4xy' + 5y = \cos x\)
2. \(x \frac{d^3y}{dx^3} - \left(\frac{dy}{dx} \right)^4 + y = 0\)
3. \(t^3y''' - t^3y'' + 6y = 0\)
4. \(\frac{d^2u}{dr^2} + \frac{du}{dr} + u = \cos(r + u)\)
5. \(\frac{d^2y}{dx^2} = \sqrt{1 + \left(\frac{dy}{dx} \right)^2}\)
6. \(\frac{d^2R}{dt^2} = \frac{k}{R^2}\)
7. \((\sin \theta)y''' - (\cos \theta)y' = 2\)
8. \(\ddot{x} - \left(1 - \frac{x^2}{3} \right) \dot{x} + x = 0\)

In Problems 9 and 10 determine whether the given first-order differential equation is linear in the indicated dependent variable by matching it with the first differential equation given in (7).

9. \((y^2 - 1) \, dx + x \, dy = 0\); in \(y\); in \(x\)
10. \(u \, dv + \left(v + uv - u e^u \right) \, du = 0\); in \(v\); in \(u\)

In Problems 11–14 verify that the indicated function is an explicit solution of the given differential equation. Assume an appropriate interval \(I\) of definition for each solution.

11. \(2y' + y = 0\); \(y = e^{-x/2}\)
12. \(\frac{dy}{dt} + 20y = 24\); \(y = \frac{6}{5} - \frac{6}{5} e^{-20t}\)
13. \(y'' - 6y' + 13y = 0\); \(y = e^{3x} \cos 2x\)
14. \(y'' + y = \tan x\); \(y = -(\cos x) \ln(\sec x + \tan x)\)

In Problems 15–18 verify that the indicated function \(y = \phi(x)\) is an explicit solution of the given first-order differential equation. Proceed as in Example 2, by considering \(\phi\) simply as a function, give its domain. Then by considering \(\phi\) as a solution of the differential equation, give at least one interval \(I\) of definition.

15. \((y - x)y' = y - x + 8\); \(y = x + 4\sqrt{x} + 2\)
16. \(y' = 25 + y^2\); \(y = 5 \tan 5x\)
17. \(y' = 2xy^2\); \(y = 1/(4 - x^2)\)
18. \(2y' = y^3 \cos x\); \(y = (1 - \sin x)^{-1/2}\)

In Problems 19 and 20 verify that the indicated expression is an implicit solution of the given first-order differential equation. Find at least one explicit solution \(y = \phi(x)\) in each case. Use a graphing utility to obtain the graph of an explicit solution. Give an interval \(I\) of definition for each solution \(\phi\).

19. \(\frac{dX}{dt} = (X - 1)(1 - 2X); \quad \ln \left(\frac{2X - 1}{X - 1} \right) = t\)
20. \(2xy \, dx + (x^2 - y) \, dy = 0\); \(-2x^2y + y^2 = 1\)

In Problems 21–24 verify that the indicated family of functions is a solution of the given differential equation. Assume an appropriate interval \(I\) of definition for each solution.

21. \(\frac{dP}{dt} = P(1 - P); \quad P = \frac{c_1 e^t}{1 + c_1 e^t}\)
22. \(\frac{dy}{dx} + 2xy = 1; \quad y = e^{-x^2} \int_0^x e^{2t} \, dt + c_1 e^{-x^2}\)
23. \(\frac{d^2y}{dx^2} - 4 \frac{dy}{dx} + 4y = 0; \quad y = c_1 e^{2x} + c_2 e^{-2x}\)
24. \(x^2 \frac{d^3y}{dx^3} + 2x^3 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = 12x^2; \quad y = c_1 x^{-1} + c_2 x + c_3 x \ln x + 4x^2\)
25. Verify that the piecewise-defined function
 \[
y = \begin{cases} -x^2, & x < 0 \\
x^2, & x \geq 0
\end{cases}
\]
 is a solution of the differential equation \(xy' - 2y = 0\) on \((-\infty, \infty)\).
26. In Example 3 we saw that \(y = \phi_1(x) = \sqrt{25 - x^2}\) and \(y = \phi_2(x) = -\sqrt{25 - x^2}\) are solutions of \(dy/dx = -x/y\) on the interval \((-5, 5)\). Explain why the piecewise-defined function
 \[
y = \begin{cases} \sqrt{25 - x^2}, & -5 < x < 0 \\
-\sqrt{25 - x^2}, & 0 \leq x < 5
\end{cases}
\]
is not a solution of the differential equation on the interval \((-5, 5)\).
In Problems 27–30 find values of \(m \) so that the function \(y = e^{mx} \) is a solution of the given differential equation.

27. \(y' + 2y = 0 \)
28. \(5y' = 2y \)
29. \(y'' - 5y' + 6y = 0 \)
30. \(2y'' + 7y' - 4y = 0 \)

In Problems 31 and 32 find values of \(m \) so that the function \(y = x^m \) is a solution of the given differential equation.

31. \(xy'' + 2y' = 0 \)
32. \(x^2y'' - 7xy' + 15y = 0 \)

In Problems 33–36 use the concept that \(y = \text{constant} \) is a constant function if and only if \(y' = 0 \) to determine whether the given differential equation possesses constant solutions.

33. \(3xy' + 5y = 10 \)
34. \(y' = y^2 + 2y - 3 \)
35. \((y - 1)y' = 1 \)
36. \(y'' + 4y' + 6y = 10 \)

In Problems 37 and 38 verify that the indicated pair of functions is a solution of the given system of differential equations on the interval \((-\infty, \infty)\).

37. \(\frac{dx}{dt} = x + 3y \)
38. \(\frac{d^2x}{dt^2} = 4y + e^t \)

\[
\begin{align*}
\frac{dy}{dt} &= 5x + 3y; & \frac{d^2y}{dt^2} &= 4x - e^t; \\
x &= e^{-2t} + 3e^{6t}; & x &= \cos 2t + \sin 2t + \frac{1}{2} e^t, \\
y &= -e^{-2t} + 5e^{6t}; & y &= -\cos 2t - \sin 2t - \frac{1}{2} e^t
\end{align*}
\]

Discussion Problems

39. Make up a differential equation that does not possess any real solutions.

40. Make up a differential equation that you feel confident possesses only the trivial solution \(y = 0 \). Explain your reasoning.

41. What function do you know from calculus is such that its first derivative is itself? Its first derivative is a constant multiple \(k \) of itself? Write each answer in the form of a first-order differential equation with a solution.

42. What function (or functions) do you know from calculus is such that its second derivative is itself? Its second derivative is the negative of itself? Write each answer in the form of a second-order differential equation with a solution.

43. Given that \(y = \sin x \) is an explicit solution of the first-order differential equation \(\frac{dy}{dx} = \sqrt{1 - y^2} \). Find an interval \(I \) of definition. [Hint: \(I \) is not the interval \((-\infty, \infty)\).]

44. Discuss why it makes intuitive sense to presume that the linear differential equation \(y'' + 2y' + 4y = 5 \sin t \) has a solution of the form \(y = A \sin t + B \cos t \), where \(A \) and \(B \) are constants. Then find specific constants \(A \) and \(B \) so that \(y = A \sin t + B \cos t \) is a particular solution of the DE.

In Problems 45 and 46 the given figure represents the graph of an implicit solution \(G(x, y) = 0 \) of a differential equation \(dy/dx = f(x, y) \). In each case the relation \(G(x, y) = 0 \) implicitly defines several solutions of the DE. Carefully reproduce each figure on a piece of paper. Use different colored pencils to mark off segments, or pieces, on each graph that correspond to graphs of solutions. Keep in mind that a solution \(\phi \) must be a function and differentiable. Use the solution curve to estimate an interval \(I \) of definition of each solution \(\phi \).

45. Graph for Problem 45

![Graph for Problem 45](image)

46. Graph for Problem 46

![Graph for Problem 46](image)

47. The graphs of members of the one-parameter family \(x^3 + y^3 = 3cxy \) are called folia of Descartes. Verify that this family is an implicit solution of the first-order differential equation

\[
\frac{dy}{dx} = \frac{y(y^3 - 2x^3)}{x(2y^3 - x^3)}
\]
48. The graph in Figure 1.1.6 is the member of the family of folia in Problem 47 corresponding to \(c = 1 \). Discuss: How can the DE in Problem 47 help in finding points on the graph of \(x^3 + y^3 = 3xy \) where the tangent line is vertical? How does knowing where a tangent line is vertical help in determining an interval \(I \) of definition of a solution \(\phi \) of the DE? Carry out your ideas, and compare with your estimates of the intervals in Problem 46.

49. In Example 3 the largest interval \(I \) over which the explicit solutions \(y = \phi_1(x) \) and \(y = \phi_2(x) \) are defined is the open interval \((−5, 5)\). Why can’t the interval \(I \) of definition be the closed interval \([-5, 5]\)?

50. In Problem 21 a one-parameter family of solutions of the DE \(P' = P(1 − P) \) is given. Does any solution curve pass through the point \((0, 3)\)? Through the point \((0, 1)\)?

51. Discuss, and illustrate with examples, how to solve differential equations of the forms \(dy/dx = f(x) \) and \(d^2y/dx^2 = f(x) \).

52. The differential equation \(x(y')^2 − 4y' − 12x^3 = 0 \) has the form given in (4). Determine whether the equation can be put into the normal form \(dy/dx = f(x, y) \).

53. The normal form (5) of an \(n \)-th order differential equation is equivalent to (4) whenever both forms have exactly the same solutions. Make up a first-order differential equation for which \(F(x, y, y') = 0 \) is not equivalent to the normal form \(dy/dx = f(x, y) \).

54. Find a linear second-order differential equation \(F(x, y, y', y'') = 0 \) for which \(y = c_1x + c_2x^2 \) is a two-parameter family of solutions. Make sure that your equation is free of the arbitrary parameters \(c_1 \) and \(c_2 \).

Qualitative information about a solution \(y = \phi(x) \) of a differential equation can often be obtained from the equation itself. Before working Problems 55–58, recall the geometric significance of the derivatives \(dy/dx \) and \(d^2y/dx^2 \).

55. Consider the differential equation \(dy/dx = e^{-x^2} \).
 (a) Explain why a solution of the DE must be an increasing function on any interval of the \(x \)-axis.
 (b) What are \(\lim_{x \to -\infty} dy/dx \) and \(\lim_{x \to \infty} dy/dx \)? What does this suggest about a solution curve as \(x \to \pm \infty \)?
 (c) Determine an interval over which a solution curve is concave down and an interval over which the curve is concave up.
 (d) Sketch the graph of a solution \(y = \phi(x) \) of the differential equation whose shape is suggested by parts (a)–(c).

56. Consider the differential equation \(dy/dx = 5 − y \).
 (a) Either by inspection or by the method suggested in Problems 33–36, find a constant solution of the DE.
 (b) Using only the differential equation, find intervals on the \(y \)-axis on which a nonconstant solution \(y = \phi(x) \) is increasing. Find intervals on the \(y \)-axis on which \(y = \phi(x) \) is decreasing.

57. Consider the differential equation \(dy/dx = y(a − by) \), where \(a \) and \(b \) are positive constants.
 (a) Either by inspection or by the method suggested in Problems 33–36, find two constant solutions of the DE.
 (b) Using only the differential equation, find intervals on the \(y \)-axis on which a nonconstant solution \(y = \phi(x) \) is increasing. Find intervals on which \(y = \phi(x) \) is decreasing.
 (c) Using only the differential equation, explain why \(y = a/2b \) is the \(y \)-coordinate of a point of inflection of the graph of a nonconstant solution \(y = \phi(x) \).
 (d) On the same coordinate axes, sketch the graphs of the two constant solutions found in part (a). These constant solutions partition the \(xy \)-plane into three regions. In each region, sketch the graph of a nonconstant solution \(y = \phi(x) \) whose shape is suggested by the results in parts (b) and (c).

58. Consider the differential equation \(y' = y^2 + 4 \).
 (a) Explain why there exist no constant solutions of the DE.
 (b) Describe the graph of a solution \(y = \phi(x) \). For example, can a solution curve have any relative extrema?
 (c) Explain why \(y = 0 \) is the \(y \)-coordinate of a point of inflection of a solution curve.
 (d) Sketch the graph of a solution \(y = \phi(x) \) of the differential equation whose shape is suggested by parts (a)–(c).

Computer Lab Assignments

In Problems 59 and 60 use a CAS to compute all derivatives and to carry out the simplifications needed to verify that the indicated function is a particular solution of the given differential equation.

59. \(y^{(4)} − 20y''' + 158y'' − 580y' + 841y = 0; \)
 \[y = xe^{5x} \cos 2x \]

60. \(x^3y''' + 2x^2y'' + 20xy' − 78y = 0; \)
 \[y = 20 \frac{\cos(5 \ln x)}{x} - 3 \frac{\sin(5 \ln x)}{x} \]