The Effect of Advertising on Home Equity Credit Choices*

Sumit Agarwal
Senior Research Economist
Federal Reserve Bank of Chicago
230 South LaSalle St.
Chicago, IL 60604
312-322-5973
sagarwal@frbchi.org

and

Brent W. Ambrose
Smeal Professor of Real Estate
Institute for Real Estate Studies
Smeal College of Business
The Pennsylvania State University
University Park, PA 16802-3603
814-867-0066
bwa10@psu.edu

November 11, 2010

*We thank Jan Brueckner; Richard Buttimer; Souphala Chomsisengphet; Dimitris Christelis (European University Institute Discussant); Henrik Cronqvist (AEA Discussant); Jim Follain; Fu Yuming; Bert Higgins; Andrew Karolyi; David Laibson; Ken Lusht; Donna Nicholson; George Pennacchi; Devin Pope (NBER Discussant); John Quigley; Stuart Rosenthal; Nancy Wallace; and the seminar participants at 2008 American Economic Association meeting in New Orleans; the 2008 NBER Summer Institute; Baruch College; the Federal Reserve Bank of Chicago; the National University of Singapore; the Ohio State University; Syracuse University; the University of California-Berkeley; the University of North Carolina at Charlotte; and the 2007 Conference on Behavioral Approaches to Consumption, Credit, and Asset Allocation at the European University Institute in Florence, Italy, for helpful discussions and comments. Research assistance ably provided by Lauren Gaudino and Cosmin Lucaci. We also thank Luca Benzoni and Olena Chyruk for providing us with the bond risk premium data. The views expressed in this research are those of the authors and not necessarily those of the Federal Reserve System or the Federal Reserve Bank of Chicago.
The Effect of Advertising on Home Equity Credit Choices

ABSTRACT

We examine the effect of direct mail (commonly referred to as junk mail) advertising on individual financial decisions by studying consumer choice of home equity debt contracts. Consistent with the theoretical predictions, we find that financial variables underlying the relative pricing of debt contracts are the leading factors explaining consumers’ home equity debt choice. Furthermore, we also find that the intended use of debt proceeds significantly impacts consumer choice. However, when we study a subset of consumers who received a direct mail solicitation for a particular debt contract (line versus loan), we find evidence that the relative pricing variables are less relevant in explaining consumer contract choice, even though they were presented with a full menu of debt contracts. Thus, our results are consistent with the view that advertising is persuasive.

JEL Classification: D1; D8; G21; M3
Keywords: Persuasion, Advertising, Contract Choice, Home Equity Lending
1 Introduction

In 2005, the top 100 U.S. advertisers spent over $271 billion on marketing across all forms of media. Of this amount, over $55 billion was spent on direct mail advertisements, making “junk mail” second only to television (at $68 billion) in dollars expended on advertising.\(^1\) Financial institutions spent over $8.4 billion marketing a wide variety of investment and credit products (e.g., mutual funds, insurance contracts, bank accounts, credit cards, and mortgage loans to name just a few of the major categories), making the financial services the fourth highest industry by dollars spent on advertising.\(^2\)

Obviously, one of the roles of advertising is to persuade the consumer to purchase a good or service. Thus, a natural question arises: To what extent does advertising or persuasion impact consumer financial decisions? We answer this question by examining the effect of direct advertising (often referred to as “junk” mail) on one of the most important financial decisions facing households – the choice of mortgage contract type.

Financial economists now recognize that marketing and persuasion can affect consumer investment decisions. For example, studies of consumer investments in mutual funds indicate that marketing plays an active role in determining the money flow into funds.\(^3\) In addition to evidence from mutual fund trading, Grullon, Kanatas, and Weston (2004) find evidence linking firm product market advertising and investor interest. Furthermore, Barber and Odean (2008) document that exogenous factors calling attention to particular stocks can affect investor purchase decisions.\(^4\) Thus, these studies reinforce the idea that marketing can and does impact financial decisions.

While previous research in economics and marketing indicates that advertising is effective, little is known about the impact that advertising has on altering consumer evaluation of financial decisions.\(^5\) That is, can advertising lead consumers to ignore important financial factors when

2. To put this in perspective, automotive, retail and telecom were the top three industries in terms of advertising expenditures at $20.9 billion, $18.6 billion, and $9.9 billion, respectively (Source: *Advertising Age*, June 26, 2006).

3. In one of the first studies to explicitly examine mutual fund marketing, Sirri and Tufano (1998) suggest that mutual fund advertising lowers consumer search costs and that this can explain the link between advertising and fund flow. Similarly, Jain and Wu (2000) and Barber, Odean, and Zheng (2005) show that mutual fund advertising is related to money flow (investment). More recently, Cronqvist (2006) shows that mutual fund advertising impacts investors' choices even though it provides little information. In addition, Reuter and Zitzewitz (2006) find that mutual fund flows are positively related to positive news articles in the financial press.

4. Although Barber and Odean (2008) do not explicitly examine the role of advertising, they do note that news events, excessive trading volume, and extraordinary returns can affect investment decisions.

5. The economics literature traditionally classifies advertising as being persuasive, informative, or complementary.
faced with an economic decision? In one of the few studies to examine this question, Bertrand et al. (2006) conduct a field experiment in South Africa, using personal loan contracts. Their experiment presents evidence showing that variations in the psychological features of the advertisement, as well as traditional economic variables such as interest rates, impact consumer loan take-up rates. The results from this field experiment are consistent with the findings of Russo, Carlson, and Meloy (2006) that persuasive information can lead decision-makers to choose inferior alternatives. At the theoretical level, Mullainathan, Schwartzstein, and Shliefer (2006) build a simple model of persuasion that helps explain certain aspects of marketing – branding, advertisement, and product attributes (also see Mullainathan and Shliefer, 2005) – while Shapiro (2006) theoretically demonstrates that advertisement can be persuasive rather than informative.

To the best of our knowledge, little research has examined the impact that advertising and persuasion can have on consumer choice in the mortgage market. Yet, for most households, their mortgage is their single largest financial liability and the choice between fixed-rate mortgage (FRM) versus adjustable-rate mortgage (ARM) contracts can have a substantial impact on the overall cost of home financing (Campbell, 2006).

We examine the consumer choice of fixed versus variable rate debt by focusing on the home equity lending market in order to determine whether consumers rationally price the interest rate insurance feature of fixed-rate home-equity loans in the presence of direct mail advertising. Our data come from a large financial institution (the data are proprietary in nature) that accepted home equity credit applications from a large number of branch offices. Furthermore, we utilize a natural experiment arising from the bank’s marketing campaign that allows us to determine whether an applicant was exposed to a direct mail solicitation prior to applying for a loan. During the marketing campaign, applicants arrived at the bank’s branch locations via one of two methods. First, applications were accepted at local branches from customers who were not targeted by the bank’s marketing campaign. We refer to these applicants as “walk-in” (WI) customers. Second,

6In a related area of the literature, numerous studies have focused on the role that information framing has on individual decision choices (see, for example, Kahneman and Tversky, 1979, and Tversky and Kahneman, 1981 and 1986, among others.)

7Recently, Perry and Motley (2008) explore the differences in newspaper print advertising message content in the Washington, D.C. metropolitan area aimed at the prime and subprime mortgage markets. Their analysis reveals that newspaper print mortgage advertisements having persuasive elements were more common than print advertisements containing informative elements.
the lender received applications at the branch locations from customers who were targeted with a
direct mail solicitation advertising a home equity product. We refer to these applicants as “direct
mail” (DM) customers. In addition, we use the bank’s pricing algorithm to precisely calculate
the loan offer rate for the product not selected. Thus, we are able to test the persuasive view
versus the informative or complementary view of advertising by examining the choices of the DM
customers relative to the choices made by the WI customers. If the lender’s direct mail campaign
is persuasive, then we should observe differences between the DM and WI customers’ mortgage
choices. However, if the advertising is informative or complementary, then we should observe DM
and WI customers responding similarly to changes in economic conditions.

Previewing our results, we find that the WI customers reacted as expected and chose fixed-rate
or variable-rate home equity credit products based on the prevailing interest rate and economic
environment at the time of application. That is, WI customers selected the variable-rate product
during periods with higher interest rates. The results from the analysis of the WI customers are
broadly consistent with previous empirical work. However, in comparing product choice across DM
and WI customers, we find that DM customers do not react as expected to changes in the economic
environment.

Our empirical method allows us to control for all observable differences between the WI and DM
customers that are captured by the bank’s underwriting process. As a result, we are able to isolate
the effect of the direct mail solicitation on the customer’s mortgage decision. In particular, we
show that consumers who receive a direct mail solicitation are more likely to ignore the important
economic and interest rate environment factors that influenced the decisions of the WI customers.
Examining the applicant choices reveals that 78 percent of the DM customers were influenced by
the bank’s solicitation, while 22 percent responded to signals present in the economic environment.
Further analysis of the subset of applicants who were clearly influenced by the bank’s solicitation
reveals that 74 percent were persuaded to originate a product that was opposite to the one selected
by their counterparts who did not receive a direct mail solicitation. However, we also find that the
direct mail solicitation could be classified as informative for 26 percent of the DM customers.

Interestingly, for the borrowers that our analysis indicates were likely persuaded by the bank’s
marketing campaign, we find that their three-month prepayment rate is almost four times higher
than the corresponding prepayment rates on borrowers who were informed by the bank’s solicitation.
These results are consistent with evidence of consumer learning. Thus, while our study reveals that bank advertising has a persuasive effect on consumer financial decisions for a majority of the applicants who received a solicitation, we also find evidence that is consistent with the informative role of advertising for a smaller subset of consumers.

Finally, we believe that our findings are not the result of sample selection issues arising from possible correlation between the customer’s decision to respond to the bank’s marketing campaign and the mortgage choice decision. First, we note that the choice of fixed-rate or adjustable-rate debt is a function of a borrower’s expected tenure. As a result, we expect that if sample selection is present it should bias our analysis toward observing a higher probability of selecting the fixed-rate product, weakening the effect of a line solicitation and biasing our estimated coefficients away from statistical significance. Second, we find no differences in location patterns between WI and DM customers. Third, we use a variety of econometric methods to control for possible borrower self-selection bias – all of which point to the same conclusion. Thus, we do not believe that sample selection is biasing our findings of a persuasive advertising effect.

The findings from this study support the growing literature revealing that consumers are highly influenced by the presentation of information that frames financial decisions. For example, Madrian and Shea (2001) present evidence showing that the design of a firm’s retirement contribution plan has a meaningful impact on the participation choices of employees. In another example outside of economics, Kressel, Chapman, and Leventhal (2007) demonstrate that the format of survey questions has a direct impact on an individual’s end-of-life treatment choice. In addition, in an area more closely related to the mortgage choice decision examined in this paper, Shiller (2008) discusses anecdotal evidence that many subprime borrowers accepted mortgage terms that were probably not in their best interests, simply because the information about the contract appeared to come from an expert – such as a financial institution. Thus, our result indicating that advertising has a strong influence on consumer choice of mortgage product is consistent with this growing body of evidence showing that the way information is presented or that the way financial choices are framed can have a significant impact on the decision outcome.

8See Agarwal et al. (2005).
10Brown, Liang, and Weisbenner (2007) also show that the menu of investment options has a significant impact on participant portfolio choice.
Our paper proceeds as follows. In the next section, we outline the previous theoretical and empirical studies of borrower mortgage choice and the role of advertising. In Section 3, we discuss the differences between home equity lines-of-credit and home equity loans. We describe the data and empirical strategy in 4. Sections 5, 6, and 7 present our primary empirical tests designed to triangulate the effect of the bank’s solicitation. Section 8 then discusses several robustness checks. We conclude in section 9.

2 Mortgage Choice and the Role of Advertising

The theoretical literature on mortgage choice is well developed and offers a number of testable hypotheses. For example, Alm and Follain (1987) and Brueckner (1986) suggest that borrower risk aversion is a primary factor determining mortgage choice. These models indicate that borrowers with low risk aversion and high discount rates should prefer the higher interest rate risk associated with adjustable contracts, while borrowers with relatively high risk aversion and/or lower discount rates should prefer fixed-rate contracts. Thus, the trade-off between fixed-rate and adjustable-rate mortgages should depend upon the prevailing interest rate environment and risk premiums at the time of origination.11

Extending the earlier work on mortgage choice, Brueckner (1993) and Rosenthal and Zorn (1993) focus on the role that borrower expected mobility plays in determining the selection of adjustable versus fixed-rate debt. The comparative statics derived from these models indicate that the borrower’s propensity to choose an adjustable-rate contract is inversely related to her expected tenure. Furthermore, the comparative statics in Brueckner (1993) also support earlier theoretical models by indicating that the level of interest rates are inversely related to the attractiveness of the adjustable-rate debt.

More recently, a number of researchers have recognized the complexity and importance of the optimal mortgage choice problem within the context of household life-cycle consumption models. For example, Campbell and Cocco (2003) solve a dynamic model of mortgage choice and consumption assuming that borrower income is risky. Their analysis implies that borrowers with high risk aversion will prefer fixed-rate mortgages and that mortgage choice may reveal unobserved

11See Dhillion, Shilling, and Sirmans (1987) for empirical verification.
heterogeneity in borrower risk profiles.12 In a novel empirical test that takes advantage of the discontinuity in the U.S. mortgage market resulting from the distinction between “conforming” and “non-conforming” mortgages, Vickery (2006) finds that borrower mortgage choices are highly sensitive to changes in FRM interest rates.13 For example, Vickery (2006) estimates that a 10 basis point increase in fixed-rate mortgage rates corresponds to a 10.4 percentage point decline in the FRM market share.14

While the theoretical literature clearly shows that borrower choice of mortgage type should depend upon prevailing financial conditions at origination, the prior empirical research has relied on the use of originated loans, necessitating the use of econometric models to infer borrower sensitivity to the interest rate environment.15 Yet, a recent analysis of the home equity lending market by Agarwal et al. (2008) reveals that lenders can and do alter loan contract terms during the underwriting process and thus effect the observed “choice” of fixed-rate versus adjustable-rate contracts. In this study, we focus on the borrower’s initial choice as revealed on the credit application. Thus, we are able to isolate the factors impacting borrower choice, free of any bias introduced through subsequent lender screening and underwriting.

While our brief review of the literature demonstrates that borrower mortgage choice has received considerable attention, no study has examined the impact of lender advertising on this choice. Economists have long considered the effect of advertising on consumer behavior. In a recent survey of the previous century of economic research on advertising, Bagwell (2007) notes that economists generally view advertising as falling into one of three categories: persuasive, informative, or complementary. Under the persuasive view, economists assume that “advertising alters consumers’ tastes.”16 According to the persuasive theory, firms advertise with the goal of altering

12See also Sa-Aadu and Shilling (1994); Sa-Aadu and Sirmans (1995); and Chiang, Chow, and Liu (2002). Campbell (2006) confirms this result by finding that the share of ARMs to total mortgage origination is directly proportional to the both the FRM–ARM interest rate differential and the level of the FRM interest rate. In addition, borrower mobility (see Chan, 1996; and Gabriel and Rosenthal, 1993) and borrower perceptions of default risk (see Posey and Yavas, 2001) may play a role in contract choice. Recent theoretical work by van Hemert, de Jong, and Driessen (2005) and van Hemert (2006) also reinforces the link between borrower risk aversion and ARM preference.

13“Conforming” mortgages are loans that are eligible for purchase by the housing government sponsored enterprises (GSEs), Fannie Mae and Freddie Mac. In contrast, “non-conforming” mortgages are ineligible for purchase by the GSEs. In general, “conforming” mortgages have loan balances below the conforming loan limit (updated annually) and meet other underwriting risk criteria set by the GSEs.

14Recent work by Koijen, van Hemert, and van Nieuwerburgh (2006) using aggregate ARM/FRM market shares indicates that the inflation risk premium and prepayment option value are primary factors in determining ARM market shares.

15See Brueckner and Follain (1988) for example.

16Bagwell (2007), p. 3.
consumers’ preferences so that they purchase the good or service being advertised. In the context of our mortgage choice problem, the persuasive view of advertising suggests that a lender’s direct mail solicitation causes consumers to ignore their evaluation of the economic environment and thus select the advertised product.

In contrast, the informative view, based on the work of Ozga (1960) and Stigler (1961), concludes that advertising provides consumers with information and lowers consumer search costs. In the context of the mortgage choice problem, the informative view of advertising suggests that the lender’s direct mail solicitation provides information to the consumers (for example, reminding them that attractive interest rates exist on home equity products). As a result, direct mail solicitations lower search costs but do not alter preferences for a particular product based on the prevailing economic environment. Under this view, the consumer’s choice should coincide with the type of product advertised in the solicitation.

Finally, the complementary view assumes that consumers’ tastes and preferences are stable and advertising complements them to encourage consumption. Under this view, the direct mail solicitation encourages prospective customers to want a home equity product from the lender, but the choice of product type still reflects their individual tastes and preferences.

Our study of home equity product choice has the potential to differentiate these competing economic views of advertising. First, if the persuasive view of advertising is correct, then we should observe the direct mail customers ignoring economic and interest rate environment factors and selecting the mortgage product suggested in the solicitation. However, if the informative view is correct, then we should observe the consumer’s product choice coinciding with the product advertised in the solicitation, and this choice should be consistent with our theoretical expectations for product choice given the economic and interest rate environment prevailing at the time of application. Finally, if the complementary view is correct, then we should observe the direct mail customers selecting products in line with the theoretical predictions, given the economic and interest rate environment, without regard to the type of product listed on the solicitation.

Empirically differentiating between the three competing views of advertising is difficult. Thus,

17 Bagwell (2007) documents that the persuasive view developed from early research by Robinson (1933) and Braithwaite (1928). Bagwell comments that Braithwaite suggested that “advertising’s effect is to induce consumers to purchase the wrong quantities of goods that are not well adapted to their true needs...” (p. 10.)

18 See Bagwell (2007) for a discussion of the development of the complementary view.
we utilize several independent methods to isolate the effect. First, we estimate a direct probabilistic choice model. Second, we analyze the DM customer who selected products other than the one on the solicitation. Third, we compare DM customers with a matched sample of WI customers in order to eliminate any spurious comparisons. Finally, we use information provided by the borrowers about their intended use for the funds to identify borrowers most likely to be informed by the advertising from those most likely to complemented by it. Each method has advantages and disadvantages. However, by triangulating the results we can separate the persuasive effect of advertising from the informative and complementary effects.

3 Differences Between Home Equity Lines and Loans

Home equity credit falls into two categories: home equity loans (i.e., “spot” loans) and home equity lines (i.e., credit lines or lines-of-credit). Agarwal et al. (2006) note that “a spot loan is a closed-end loan extended for a specified length of time requiring repayment of interest and principal in equal monthly installments.” The interest rate on home equity loans is set at loan origination. In contrast, they define a credit line as “an open-ended, variable rate, revolving credit facility that permits the consumer to borrow up to a predetermined amount (the line amount),” and note that borrowers usually are required to pay interest only on the used portion of the line during the first five years, after which the line becomes a fully amortizing loan.

Significant differences exist between borrowers who choose lines versus loans, with line borrowers having greater wealth – as indicated by their having relatively more expensive homes, higher incomes, and greater home equity. For example, Canner et al. (1998) document that the median home equity for credit line borrowers is $41,000 greater than spot loan borrowers ($76,000 versus $35,000) and that the median household income for spot loan borrowers is $10,000 less than the median household income of credit line borrowers. Canner et al. (1998) also note a significant difference in the ages of line borrowers and loan borrowers; 23 percent of the loan borrowers versus 6 percent of line borrowers are below the age of 34. In addition, the 1997 Survey of Consumers shows that 49 percent of the households who prefer loans over lines are relatively more sensitive to interest rates and that “ease of use” is the primary motivation for credit line borrowers. Thus, it is imperative to control for borrower heterogeneity in analyzing contract choice.
4 Data and Empirical Methods

The data used in this study are the same as those discussed in Agarwal et al. (2007). The data were provided by a large financial institution and consist of variable-rate home-equity lines-of-credit (HELOCs) and fixed-rate home-equity loans (HELs) issued to owner-occupants from March 2002 through December 2002. The credit lines are open for the first five years, and the borrower is only required to make interest payments on the utilized line balance during this period. After the fifth year, the line is closed and is converted to a fully amortizing, fixed-rate term loan with a remaining term of five to 15 years.

The lender received applications from customers via two channels. First, the majority of applications were from customers walking into their local branch and requesting a home equity credit. At this point, the local loan officer provided the customer with a menu of various home equity products – with the primary choice being a variable rate (line-of-credit) or fixed-rate (loan). As previously mentioned, we refer to these customers as “walk-in” (WI) customers. Between March 2002 and December 2002, the lender received over 108,000 applications by WI customers.

Second, the lender also received applications from customers who had received a direct mail solicitation advertising either a line-of-credit or home-equity loan. Between March 2002 and May 2002, the bank sent out over 3 million direct mail solicitations in 12 equally distributed waves (or campaigns) to potential customers (or households) with credit (FICO) scores above 640. Across these 12 campaigns, approximately 2.1 million customers were targeted with a line-of-credit solicitation while 981,000 received a home equity loan solicitation. Conditional on maintaining the approximately two-to-one ratio of line to loan mailings, the bank randomly selected customers to receive the line-of-credit or loan offer. That is, the bank did not specifically target individuals for

19 During the sample period, this institution had operations primarily in the New England, Mid-Atlantic, and Florida regions and was ranked among the top-five commercial banks and savings institutions by the FDIC.

20 Each product also contained a variety of pricing options based on the requested loan-to-value ratio.

21 In designing the marketing program, the bank requested that the credit bureau provide a random sample of households in the target area that had credit scores above 640 for the purpose of conducting a direct mail campaign. By law, the bank cannot request information from the credit bureau and then screen the households again prior to mailing the solicitation. That is, once the bank pulls a credit score for a household, it is obligated to send that household a solicitation. The solicitation does not indicate that the households are “pre-approved” for credit. Since the solicitation is based only on credit score, some households that ultimately respond to the offer may be denied credit by the bank based on other household characteristics that are not in line with the bank’s underwriting standards.

22 We confirmed the bank’s random assignment of the line-of-credit and loan offers through discussions with representatives at the bank. Furthermore, we note that the random assignment is consistent with industry practice in financial product marketing campaigns. For example, Ausubel (1999) reports a similar random assignment of direct mail solicitations in credit card offers.
a line or loan offer; rather, the bank randomly sent the line and loan mailings to customers with
FICO scores greater than 640. The bank’s two-to-one targeting of lines-of-credit versus loans likely reflects the underlying profitability of these contracts and responses to competitive pressures. For example, Agarwal et al. (2006) show that home equity lines-of-credit and home equity loans have significantly different default rates implying substantial differences in potential regulatory capital requirements under Basel II.

Table 1 shows the mean FICO scores and geographic distribution of the customers sent the direct mail solicitations. Consistent with the bank’s practice of randomly selecting customers for the two product solicitations, we see that the average FICO scores of the line and loan groups do not differ economically. Table 1 also shows the average credit scores and geographic distribution for the customers that responded to the bank’s solicitation. As is typical in direct mail marketing campaigns, the response rate is low. For example, 20,500 customers responded to the bank’s line-of-credit solicitation for a 0.99 percent response rate and 11,249 customers responded to the loan solicitation for a response rate of 1.15 percent. We also see that the credit scores for responding customers are lower than the credit quality of the population receiving the solicitation; this is consistent with the experience reported in other consumer loan research.

Although the customers received a solicitation for a specific product (either a line-of-credit or a loan), at the time of application the local loan officer showed them the same product menu as the WI customers and they were free to choose either product. Additionally, the solicitation for a line offer provided the option for the customer to choose a loan offer (and vice versa). As previously mentioned, we refer to the customers who responded to this advertisement as “direct mail” or DM customers.

Table 2 shows the descriptive statistics for the DM and WI customer groups. A comparison of the sample means between the WI and DM customers clearly suggests that the two groups are different. For example, on average the WI customers have higher estimated home values, greater income, more job seniority, and longer tenure at the present address. Furthermore, WI customers request greater loan amounts (consistent with having higher average house values) but lower loan-to-value ratios. Combining these risk factors suggests that WI loans are lower risk.

23 The bank’s two-to-one targeting of lines-of-credit versus loans likely reflects the underlying profitability of these contracts and responses to competitive pressures. For example, Agarwal et al. (2006) show that home equity lines-of-credit and home equity loans have significantly different default rates implying substantial differences in potential regulatory capital requirements under Basel II.

24 The precision underlying consumer credit scoring models is such that the bank would not distinguish between borrowers with FICO scores of 729 and 722.

25 Ausubel (1999) reports a similar result for responses to direct mail credit card solicitations.

26 Although it is possible that the WI customers were exposed to the bank’s direct mail marketing campaign through contact with the DM recipients (see Hong, Kubik, and Stein (2005) or Shiller and Pound (1989) for evidence of informal information transfer about financial products), we are unable to control or measure this possibility. However, if the WI customers did systematically respond to the bank’s direct mail campaign via “word-of-mouth” contact with the DM recipients, then this contamination should bias our analysis away from finding an effect for the advertisement. In our empirical analysis, we use the WI customers as the control group and thus any spill-over from
Although the DM and WI customer groups are distinct, the bank did not systematically target the line or loan solicitation to individuals who were more likely to respond to such solicitations. To confirm this, we report the summary statistics for location (neighborhood) demographic characteristics in Table 3. As we know the zip code for all walk-in customers as well as all recipients of the bank’s direct mail solicitation, we aggregated census tract demographic information from the 2000 census to the zip code level.27 The columns under “Direct Mail (Mailings)” show the mean values of the zip codes for all recipients of the bank’s solicitation. The columns associated with “Direct Mail (Response)” show the mean values of the zip codes for the customers who actually responded to the bank’s solicitation. Finally, the columns “Walk-In” show the mean values for the zip codes corresponding to the WI customers. If the bank systematically targeted areas based on demographic characteristics, then we should see differences in the demographic characteristics of the “Direct Mail (Mailings)” zip codes and the “Walk-In” zip codes. Similarly, if the customers who responded to the solicitation are concentrated in areas that are demographically distinct, then we should observe differences in the “Direct Mail (Response)” zip codes to both the “Direct Mail (Mailings)” and “Walk-In” zip codes. Comparing the mean values reported in Table 3 clearly shows that the WI and DM customers reside in demographically similar neighborhoods. For example, the median neighborhood income for persons who received a line-of-credit solicitation is $50,677; the median neighborhood income for walk-in customers who selected lines-of-credit is $50,597; and the median neighborhood income for DM customers who received a line-of-credit solicitation and responded is $50,595. As a result, it does not appear that meaningful systematic differences exists in the neighborhoods of WI and DM customers.

Our empirical analysis focuses on identifying the effect that lender advertising has on financial decisions. As discussed previously, identifying advertising’s effect is challenging. Adding to this challenge are potential selection issues arising from differences in the response sensitivity of individuals to the bank’s advertisement. Thus, we propose a consumer choice model under the assumption that consumers select the contract that maximizes their personal utility function and that this contact with the DM customers would bias downward our estimates of the direct mail effect on the DM customers’ choice. This implies that any positive effect may actually be stronger than reported in our analysis. Furthermore, as part of our process for matching the direct mail customers with the home equity credit application database, we confirmed that the customers identified as direct mail applicants applied for the credit after the mailing date of the direct mail solicitation.

27The statistics are calculated by weighting by the number of customers in each zip code.
utility is maximized subject to a variety of economic and personal factors. Analogous to studies that examine the effect of social programs or medical treatments, we include a shift variable that identifies the type of direct mail solicitation received.

We face two, somewhat related, potential sample selection issues arising from the consumer’s choice of mortgage product as well as the consumers decision to apply to our particular bank. The first issue is that the consumer’s response to the bank’s marketing effort may not be exogenous. That is, the household’s decision to respond to the offer may be correlated with the factors that impact the mortgage choice decision. The nature of the correlation arises from the fact that the choice of fixed versus adjustable-rate loans is a function of expected borrower tenure. For example, analysis by Rosenthal and Zorn (1993) suggests that borrowers with relatively higher expected mobility should prefer adjustable-rate loans over fixed-rate loans. Since our study involves home equity credit (not first mortgages), it is reasonable to assume that applicants seeking home equity credit have low expected mobility – leading to a high tenure expectation. As a result, home equity credit applicants should have an unbiased preference for a fixed-rate loan, all else being equal. Thus, any bias introduced as a result of applicant self-selection should be skewed toward observing a higher probability of selecting the fixed-rate product, weakening the effect of a line solicitation and biasing our estimate of shift variable downward. As a result, the presence of applicant self-selection should bias the estimated coefficients away from our hypothesis that advertising will affect consumer choices. Thus, any finding of a persuasive effect from advertising would be stronger than indicated.

The second sample selection issue is the possibility that the individuals who responded to the bank’s solicitation already had a preference for a particular credit product and the direct mail solicitation simply reminded them that credit was available at the bank. That is, the household’s decision to respond to the bank’s offer could be correlated with unobserved factors affecting their preference for one product of the other. We control for this possibility through three independent econometric methods. First, in section 5 we control for sample selection by estimating a typical self-selection model often used in program evaluation as discussed in Maddala (1983) and Green (1993). Second, we estimate a multinomial logit model of credit choice that combines the decision to apply for credit with the type of credit selected (section 6). This model allows us to directly capture the cross-product effects of the bank’s solicitations. Third, we create a matched sample design that
controls for all observable differences between borrowers exposed to the bank’s solicitation letter and those who applied for credit without having prior contract from the bank (section 7). We match the direct mail respondents to the walk-in customers using all the information contained on the credit applications – in effect creating a subset of WI customers who are identical to the DM customers across all key demographic, economic, and geographic variables. If the sample selection issue is present, then we should observe the DM customers’ choices coinciding with the matched WI customers. Triangulating across these three methods will allow us to pinpoint the effect of the bank’s marketing campaign.

5 Bivariate Probit Analysis Controlling for Self-selection

5.1 Model

As a first method for controlling for possible self-selection bias, we analyze the impact of the bank’s solicitation in a bivariate probit model framework. We begin with the following model of the customer’s decision to respond to the bank’s solicitation:

$$Prob(\Delta_i = 1) = \Phi(\gamma'Z_i);$$

(1)

where Δ_i equals one if individual i responded to the direct mail solicitation and zero otherwise, Z_i is a matrix representing the individual’s credit (FICO) score at the time the bank began the marketing campaign along with location (zip-code) and campaign fixed effects, and Φ represents the standard normal distribution.\(^{28}\) Next, letting Y_i represent applicant i’s choice of mortgage type, where $Y = 1$ denotes the variable rate line-of-credit and $Y = 0$ is the fixed-rate home equity loan, we determine whether the bank’s solicitation had an impact on the applicant’s mortgage choice with the following probit model:

$$Pr(Y_i = 1) = \Phi(\beta X_i + \alpha I_i + \pi^R x_i^R I_i + \pi^E x_i^E I_i),$$

(2)

\(^{28}\)Due to the time lag between the start of the marketing campaign and the individual’s decision to apply for a home equity product, the individual’s credit score may change. We refer to the former as the “Solicitation FICO Score” and the later as the “Application FICO Score”.

where $X_i = [x^R_i, x^E_i, x^D_i]$ is a matrix of explanatory variables describing the individual’s risk (x^R_i), the economic rate environment (x^E_i), and other individual demographic and geographic factors (x^D_i); $I_i = [I^v_i, I^f_i]'$ with I^v_i equaling one if the individual received a direct mail variable-rate line-of-credit solicitation and zero otherwise, and I^f_i equaling one if the individual received a direct mail fixed-rate home equity loan solicitation and zero otherwise; and $\alpha = [\alpha_v, \alpha_f], \beta, \pi^R = [\pi^R_v, \pi^R_f]',$ and $\pi^E = [\pi^E_v, \pi^E_f]'$ are the set of coefficients to be estimated. In (2), I_i represents a demand shift that isolates the effect of the direct mail solicitation on the individual’s mortgage choice probability. By interacting I_i with x^R_i and x^E_i, we are able to isolate whether the bank’s marketing efforts altered the sensitivity to factors in the prevailing financial environment.\footnote{Prior studies indicate that mortgage choice should depend upon relative borrower risk aversion and interest rates (see Alm and Follain (1987) and Brueckner (1986)).} Thus, the coefficients π^R and π^E provide an indication of the incremental impact that the direct mail solicitation had on the evaluation of the economic and risk factors, and estimation of (2) provides an indication of whether receiving a direct mail solicitation affects the mortgage choice decision.

We estimate equations (1) and (2) jointly via full information maximum likelihood where ρ represents the covariance of the normally distributed $[0,1]$ error terms in (1) and (2). By including all hard information captured by the bank’s application in X_i and aggregate information concerning the borrower’s specific location (zip-code) in Z_i, the bivariate probit framework allows us to effectively control for potential differences between WI and DM customers.

5.2 Results

As noted above, we include a variety of information obtained from the borrower’s credit application as well as macro economic information at the time of the application to parameterize equations (1) and (2). In order to capture the effect on mortgage choice of the prevailing interest rate environment at the time of application, we include the fixed-rate HEL mortgage interest rate level (Outside Option FRM APR) and the difference between the offered HEL (FRM) and HELOC (ARM) interest rates (the Outside Option Rate Difference). Thus, by knowing exactly what rate each Walk-In (WI) and Direct Mail (DM) customer was offered for the different loans, we are able to separate the relative pricing effects that might impact the choice of products from the persuasive effects of advertising.
Tables 4 and 5 report the estimated coefficients for the bivariate probit model. First, Table 4 reports the estimated coefficients for the first-stage sample selection model. We note that the estimated coefficient for the customer credit score at solicitation is negative and significant (at the 5 percent level), indicating that offer recipients with higher credit scores are less likely to respond to the bank’s solicitation. We also include zip code location fixed effects and campaign fixed effects to control for potential differences in customer response to the solicitation arising from geographic location and mailing date.

Table 5 reports the coefficients from the second-stage sample selection estimation. The estimated coefficients confirm prior research about the decision to choose between a variable and fixed rate contract. We also note that the sample selection correction parameter (\(\rho \)) is statistically insignificant.

Given the large number of observations included in the analysis, it is not surprising that almost all of the estimated coefficients in Table 5 are statistically significant (at the 5 percent level), with the exception being the interaction of the direct mail dummy variables with the income and interest rate variables. Thus, we focus on the variables’ marginal impacts to provide guidance as to the relative importance of the factors in impacting the borrower’s decision.\(^30\) Interestingly, only the estimated coefficients for the interest rate environment (Outside Option Rate Difference and Outside Option FRM APR), the borrowers declared intended use of the funds (consumption or refinancing), income, and direct mail solicitation have marginal impacts greater than 5 percent.\(^31\)

Turning first to the impact of the borrower’s declared use of the debt proceeds, the marginal effects clearly show a strong impact on choice of contract. The marginal impacts indicate that a borrower that intends to use the funds for consumption is 12.9 percent more likely to select the adjustable-rate line-of-credit than borrowers intending to use the funds for home improvements.

\(^30\) Ai and Norton (2003) point out that the marginal effects typically supplied by conventional statistical software for interaction terms in non-linear models are incorrect. Thus, we follow Ai and Norton (2003) and calculate the marginal effects for the interaction variables as

\[
\frac{\partial^2 \Phi(\cdot)}{\partial I_i \partial X^R_i} = \pi_R \Phi'(\cdot) + (\beta + \pi_R I_i)(\alpha + \pi_R X^R_i)\Phi''(\cdot)
\]

\((3) \)

\[
\frac{\partial^2 \Phi(\cdot)}{\partial I_i \partial X^E_i} = \pi_E \Phi'(\cdot) + (\beta + \pi_E I_i)(\alpha + \pi_E X^E_i)\Phi''(\cdot)
\]

\((4) \)

where \(\Phi \) represents the standard normal cumulative distribution.

\(^31\) The ‘home improvement’ intended use is the reference category for the use of funds dummy variables.
However, borrowers intending to refinance existing debt are 16.6 percent less likely to select the adjustable-rate line-of-credit than borrowers seeking funds for home improvements. Clearly borrowers prefer the flexibility associated with the adjustable-rate line-of-credit when using home-equity to smooth consumption while preferring the certainty of fixed-rate contracts when refinancing (or consolidating) existing debt. In addition, we find that higher income borrowers are 6 percent more likely to select the adjustable-rate line-of-credit contract.

With respect to the effects of the economic environment prevailing at the time of application, we find that the impact of market interest rates in influencing the borrower choice of contract is consistent with the theoretical predictions of Alm and Follain (1987) and Brueckner (1986) as well as the previous empirical evidence presented in Brueckner and Follain (1988). For example, the theoretical literature indicates that borrowers with high relative risk aversion and low discount rates are more likely to prefer fixed-rate contracts. Consistent with this theory regarding borrower risk aversion, we find that every one percentage point increase in the difference between the FRM and ARM offered rates results in a 17.4 percent increase in the probability that the borrower will select the adjustable rate contract. Furthermore, every one percentage point increase in the home equity loan interest rate (the fixed-rate product) raises the probability that the borrower will select the adjustable-rate line-of-credit by 12.8 percent.

We now examine the effect of the bank’s solicitation on the applicant’s mortgage choice. The marginal effects reported in Table 5 clearly indicate that the bank’s direct mail solicitations had a significant impact on borrower product choice. After controlling for all other factors, a borrower receiving a line-of-credit solicitation was 16.7 percent more likely to select a variable rate line-of-credit than the fixed-rate product. Similarly, borrowers who received a direct mail loan offer were 14.2 percent less likely to select the variable rate product than the fixed-rate product. In other words, the results indicate that $\alpha_v > 0$ and $\alpha_f < 0$, which is consistent with the persuasive effect of advertising. However, the insignificant coefficients and small marginal effects for the interaction terms (π^R and π^E) suggest that the bank’s marketing efforts did not alter the borrower’s sensitivity to the prevailing economic environment, which is also consistent with the complementary view.

We further investigate the complementary versus persuasive view of advertising by interacting the borrower’s stated use of the funds with solicitation type in order to infer whether the bank’s solicitation altered the customers product type preference based on their indicated use of
the funds. The complementary view of advertising suggests that we should observe similar product selection probabilities regardless of the type of solicitation received since the solicitation is supposed to remind the customers of the availability of credit but not alter their taste preferences for a particular type of credit. For example, borrowers indicating that they will use the funds for consumption would have a preference for variable rate lines-of-credit to smooth consumption while borrowers who are refinancing (or consolidating) existing debt would prefer the certainty of fixed-rate contracts.

Thus, for the complementary view of advertising to hold, we should observe similar marginal effects for the interaction of solicitation type with borrower use of funds, regardless of the type of solicitation. However, the marginal effects reported in table 5 for the interaction of solicitation and use of funds do not support this view. For example, the marginal effects indicate that consumption borrowers who receive a line-of-credit offer are 4 times more likely to select a line than consumption borrowers who receive a loan solicitation. Similarly, the marginal effects show that the probability of selecting a line-of-credit for the refinancing borrowers who received a loan solicitation is 4 times lower than refinancing borrowers who received a line offer. Again, if the advertisement was complementary, we should observe a similar effect regardless of whether the borrower received a line or loan solicitation. As a result, it appears that the bank’s solicitation did differentially impact borrower choice of product, holding all else constant. Thus, the results presented here make a compelling case against the complementary view of advertising. We provide additional evidence regarding the issue of informative versus persuasive advertising in Sections 6 and 8, below.

6 A Multinomial Logit Analysis of Mortgage Choice

6.1 Model

Our second method for identifying the effect of the bank’s solicitation on credit choice is to utilize the fact that our dataset allows us to observe individuals applying for a home-equity loan \(Pr(Y_i) = 1\), a home-equity line-of-credit \(Pr(Y_i) = 2\), or not applying for credit at the bank \(Pr(Y_i) = 0\). The classic approach for this type of problem is to estimate the following multinomial logit model of

\[32\] See Canner et al. (1998).
borrower home-equity choice:

\[Pr(Y_i = j) = \frac{e^{(\beta_j X_i + \alpha_j I_i + \pi^R_j x^R_i I_i + \pi^E_j x^E_i I_i)}}{\sum_{k=0}^{2} e^{(\beta_k X_i + \alpha_k I_i + \pi^R_k x^R_i I_i + \pi^E_k x^E_i I_i)}}, \]

(5)

where \(X_i \) is a matrix of explanatory variables defined below; \(I_i = [I^v_i, I^f_i] \) denotes whether the individual received the bank’s solicitation for a line-of-credit (v) or loan (f); and \(\alpha, \beta, \pi^R, \) and \(\pi^E \) are the set of coefficients to be estimated. We estimate (5) via maximum likelihood.

In estimating (5), we make use of the fact that we have a large set of potential customers who did not respond to the solicitation. For these individuals, we only observe their solicitation credit (FICO) score and location. Thus, we supplement this individual risk measure with zip-code level demographic characteristics (Age, Income, Gender, Race, and House price) observed for their location as control variables. For the walk-in applicants, \(I^v_i \) and \(I^f_i \) equal 0. Thus, estimation of (5) provides a direct estimation of the cross-product effects of the bank’s solicitation.

6.2 Results

The coefficients obtained from the estimation of (5) are reported in Table 6. We see that borrower credit quality (FICO Score), house price, and the bank solicitation indicator variables \((I^v_i \) and \(I^f_i \) are statistically significant at the 1 percent level. The primary variables of interest are the bank solicitation indicators \((I^v_i \) and \(I^f_i \). Consistent with the results reported in Section 5, we find that the receipt of the bank’s solicitation significantly increases the probably of applying for a home equity credit. For example, a borrower who receives a loan solicitation is 8.9 percent more likely to apply for a loan than a borrower who did not receive a solicitation while a borrower who received a line solicitation is 11.7 percent more likely to apply for a line than one who did not receive a solicitation, holding all else constant.

By comparing the marginal effects of \(I^v_i \) and \(I^f_i \) for the loans and lines response, we can obtain an estimate of the complementary versus persuasive effect. Focusing first on the borrowers who received a line solicitation \((I^v_i = 1) \), the marginal effects indicate indicate that these borrowers are 6.6 percent and 11.7 percent more likely to originate a loan and line, respectively, than a borrower who did not receive a line solicitation. Similarly, borrowers who received a loan solicitation are 8.9 percent and 8.1 percent more likely to originate loans and lines, respectively, than individuals who
did not receive the solicitation. Thus, the receipt of the bank’s solicitation clearly had an impact on the odds of applying for a credit, regardless of the type of solicitation. This finding is consistent with the informative aspect of advertising.

7 An Analysis Using a Matched Sample Design

7.1 Sample Design

Our third method for controlling for potential sample selection bias is to implement a matched sample design. The matched sample method utilizes all observable information captured on the customer’s credit application to create a control sample that was not exposed to the bank’s solicitation. Thus, by comparing the product choices between the matched samples, we are able to isolate the effect of the bank’s advertisement.

We create a matched sample of WI customers that is statistically similar to the DM customer sample. Since the bank targeted a subsample of the WI population to receive a direct mail solicitation (those with credit scores greater than 640), our analysis concentrates on the subset of WI customers identical to the DM customers with the exception that they did not receive a solicitation. In this context, the direct mail solicitation is the experimental “treatment,” and our goal is to assess whether it has any impact on mortgage choice. Under the null hypothesis that consumers choose debt contracts based on the prevailing economic environment, we should not observe a difference in the factors affecting the mortgage choice between the two groups. In other words, by directly matching customers across demographic, geographic, and time dimensions, we effectively remove any observable differences used in underwriting between the two groups.

We begin by matching the 108,117 walk-in consumers to the 31,749 direct mail consumers using the nearest centroid sorting algorithm based on the Euclidean distances computed over all demographic and financial variables within a zip code.33,34 Once we obtain the probability of the distance to the centroid, we rank order the 108,117 WI observations and choose the closest 31,749 accounts. Thus, the clustering procedure produces a sample of WI consumers that matches the

33See Anderberg (1973) and Hartigan (1985) for details on this method. In addition, see Brown and Goetzmann (1997) and Brown, Goetzmann, and Grinblatt (1998) for applications in finance of the Euclidean distance algorithm.34 As a robustness check, we also computed the Euclidean distances over a set of five pre-determined ‘key’ variables. The sorting algorithm produced an approximately 99 percent overlap between the respective WI subsamples. As a result, the results reported below are not qualitatively different.
DM consumers along these financial, demographic, and geographical variables.

Table 7 reports the descriptive statistics for the DM customers and the matched WI sample. It is clear from examining the mean values in Table 7 that the matching algorithm produces a WI sample that closely resembles the DM customers in terms of credit quality, loan amount, house value, income, and borrower age. For example, the average FICO scores and loan-to-value ratios of the two groups are within approximately 1 point of each other, and the difference in the average borrower incomes is about 2 percent ($2,462). Comparing the mean values for the WI and DM customers based on the selected product reveals little economic difference between the two groups.

Again, letting Y_i represent applicant i’s choice of mortgage type ($Y = 1$ denotes the variable rate line-of-credit and $Y = 0$ is the fixed-rate home equity loan), we estimate the following probit models of credit choice:

$$Pr[Y_{i,DM}^{DM} = 1] = \Phi(\beta X_{i} + \alpha I_{i}^{v})$$

for the DM customers and

$$Pr[Y_{i,WI}^{WI} = 1] = \Phi(\beta X_{i})$$

for the matched WI customers. As before, Φ represents the standard normal distribution, $X_{i} = [x_{i}^{R}, x_{i}^{E}, x_{i}^{D}]$ is a matrix of explanatory variables describing the individual’s risk (x_{i}^{R}), the interest rate environment (x_{i}^{E}), and other individual demographic and geographic factors (x_{i}^{D}), and I_{i}^{v} indicates whether the applicant received a direct mail variable-rate line-of-credit solicitation, and zero otherwise. Thus, α captures the differential effect of receiving a line-of-credit solicitation on the probability that the applicant selects a line-of-credit. Equations (6) and (7) are estimated via maximum likelihood.

7.2 Results

Table 8 presents the estimated coefficients for the probit models of borrower choice for the matched walk-in and direct mail samples. We compare the marginal effects to determine the sensitivity
of borrowers to the independent variables based on whether or not they received a solicitation.\footnote{As before, we calculate the marginal effects following Ai and Norton (2003).} Effectively, this method is equivalent to estimating a single model over both samples and interacting a dummy variable for direct mail with each variable.

Not surprisingly, the results are consistent with the results reported in table 5. The marginal effects indicate that WI borrowers are sensitive to changes in the interest rate environment. For example, a one point increase in the fixed-rate reference interest rate results in a 14.6 percent jump in the probability that the borrower will select the line-of-credit. In addition, every one point increase in the FRM rate over the ARM rate (Outside Option Rate Difference) increase the odds of selecting the adjustable rate contract by 11.7 percent. Furthermore, we also see that the borrower’s intended use of funds significantly impacts their product choice. Borrowers intending to use the home equity funds for consumption are 12.8 percent more likely to choose the line-of-credit while borrowers indicating that they are refinancing existing debt are 19.9 percent more likely to select the fixed-rate loan.

Table 8 also shows the estimated coefficients and marginal effects for the borrower choice model estimated on the direct mail sample. In contrast to the WI borrowers, we first notice that none of the independent financial and demographic variables have marginal effects above 10 percent. Furthermore, many of the key variables identified in the WI sample are no longer statistically significant. For example, neither the outside option rate difference or the FRM reference interest rate are statistically significant. It is important to reinforce that these variables are the actual prices being offered the borrower at the time of application. Thus, in contrast to the WI borrowers, the insignificant coefficients for these loan pricing terms implies that the direct mail customers are not basing their mortgage choice decision on the key interest rate factors identified by theory. This result is all the more striking given the relative importance of these factors in explaining the walk-in control group choice.

Comparing the marginal effects indicates that the intended use of the loan funds affects both the WI and DM customer choice. However, we see that DM customer choice is less sensitive to their stated use of funds. For example, DM borrowers indicating that they are refinancing are 8.2 percent more likely to select the fixed rate product while the refinancing WI customers are 19.9 percent more likely to select the fixed rate product. Consumption borrowers also display a similar,
but less dramatic, difference.

We included the dummy variable I^v in the direct mail model to isolate the impact of the type of direct mail offer sent to the customer. The marginal effect clearly indicates that this variable has the largest impact on the customer’s choice. Customers who receive a line of credit direct mail solicitation are 45.3 percent more likely to select the variable rate line of credit than the fixed rate loan product. The impact of this variable far exceeds the effect of any of the other variables. Thus, it appears that the bank’s solicitation even significantly dampens the effect of the customer’s intended use of the funds.

Finally, to demonstrate that the DM customers do respond differently from the WI customers to the economic environment, we estimate equation (7) for the DM sample. In other words, we do not include the I^v dummy variable. The last four columns of Table 8 show the estimated coefficients for this model. Again, the lack of significance in the coefficients for the outside option rate difference and interest rate level clearly indicate that the DM customer group is not responding to the prevailing interest rate environment. If the inclusion of I^v in (6) were biasing the results for the DM customers, then the estimated coefficients and marginal effects of the model without this variable should mirror those of the WI customers. We explore the accuracy of this conclusion further in the following sections.

The results presented here make a compelling case against the informative view of advertising. Under the informative view, we should observe similar sensitivities to changes in the interest rate environment for the WI and DM customers. Thus, the insignificant interest rate parameters for the DM customers are inconsistent with the informative view and suggests that the lender’s solicitation was persuasive.

7.2.1 Persuasive versus Complementary Advertising

In order to ascertain whether the bank’s solicitation was persuasive or complementary, we examine the choice of borrowers who received a direct mail solicitation, but chose the product not advertised. As discussed above, during the application process, all customers are presented with the full loan contract menu. Thus, even though the DM customer may have received a solicitation advertising a line-of-credit, the customer also had the option of applying for a home equity loan. By matching the database that tracked the customers who received a direct mail solicitation with the database
of applications, we can identify instances when the borrower switched products. For example, if the borrower received a line-of-credit (or loan) solicitation, but applied for a home equity loan (or line-of-credit), then we classify that borrower as a “switcher.” However, if the borrower received a line-of-credit (loan) solicitation and also applied for a line-of-credit (loan), then we classify that borrower as a “non-switcher.” We note that out of the 31,749 customers who received a direct mail solicitation, 22 percent selected a product that was different from the one in the solicitation. Furthermore, 2,375 (21 percent) of the applicants who selected the fixed-rate product received a direct mail offer for a variable-rate product, while 4,623 (23 percent) of the applicants who selected the variable-rate product received the fixed-rate solicitation.

By analyzing the switchers and non-switchers, we can draw distinctions between borrowers who were potentially persuaded (the non-switcher) versus those who were complemented (the switchers). In other words, did the “switchers” ignore the bank’s direct marketing cue and select the product consistent with prior theoretical predictions? We answer this question by estimating the walk-in model for the direct mail switchers. Table 9 reports the results from this model. Again, we compare the marginal effects to the baseline WI customers to identify any differences in sensitivity.

The results clearly indicate that the DM customers who switched are similar to the WI customers in that they are sensitive to the interest rate environment. The marginal impact of a one point increase in the outside option rate difference results in a 12.2 percent increase in the probability that they will select the variable rate product. This result compares favorably with the 11.7 percent effect observed for the WI customers. Similarly, we see that a one point increase in the reference fixed-rate mortgage rate increases the probability of selecting the variable rate product by 8.4 percent (compared with 14.6 percent for the WI customers). Finally, we also note that consumption and refinancing motivations have the same effects on the DM switching customers as the WI customers. Thus, the results are consistent with the complementary view of advertising. The DM customers who switched responded to the bank’s offer letter, but still reacted to the economic environment in selecting the product.

The results in Tables 8 and 9 revealing that switchers appear to respond to economic environment cues similar to the walk-in customers raises an interesting question: Do observable differences exist between the switchers and non-switchers? In other words, can we identify the customers who are more likely to be persuaded by the bank’s solicitation? Obviously, customers who switched
away from the product highlighted on the solicitation were not persuaded, by definition. Thus, by systematically examining the differences between customers who switched versus those who did not switch, we are able to obtain insights about the characteristics of customers who are most likely to be persuaded by the bank’s solicitation (those who did not switch.)

In order to focus on the explicit differences between customers who switched from the solicited product and those who did not, we estimate a simple logit model for switch versus no switch. Table 10 reports the estimated coefficients. The results indicate the customers having the characteristics of being more financially sophisticated (higher incomes and higher credit scores) are more likely to switch away from the advertised product. For example, the marginal effects imply that a customer with a FICO score of 774 is 24 percent more likely to switch than a customer with a FICO score of 724.36 Interestingly, we also see that older customers are less likely to switch than younger customers. For example, the marginal effects indicate that a 56-year-old customer is 33 percent less likely to switch than a 46-year-old customer.37 This result is consistent with the findings of Agarwal et al. (2007) that financial sophistication declines with age. We also see that the customer’s indicated intended use of the funds has a direct effect on the probability of switching. For example, borrowers using the loan proceeds for refinancing are 2.7 percent more likely to switch, while borrowers using the funds for consumption are 5.6 percent less likely to switch than borrowers using the funds for home improvements.

The results in Table 10 clearly indicate a significant difference between customers who switched and thus were not persuaded, versus those who did not switch (and thus may have been persuaded.) For example, the results are consistent with the idea that customers seeking to rate refinance are sufficiently sophisticated that they respond to incentives present in the economic environment and are not persuaded to accept the offer presented in the solicitation. The implications from this analysis is that consumers more susceptible to advertising persuasion appear to be less financially sophisticated.

36 The mean FICO score for the DM customers is 724.
37 The mean customer age at date of application if 46.5 years.
7.2.2 Persuasive versus Informative Advertising

In the previous section we focused on the switchers to show that they were most likely informed or complemented by the bank’s solicitation. We also saw that switchers are systematically different from the non-switchers. In this section, we examine the non-switchers to separate the persuaded from the informed.

We focus our analysis on the 24,751 customers (78 percent of the direct mail customers) who selected the product that was advertised (i.e. those who did not switch products) as these were the individuals most likely to be persuaded or informed by the bank’s advertising campaign. By definition, the 6,998 customers who selected the product opposite to the one that was advertised in their solicitation letter could not have been persuaded. For the advertisement to be persuasive, the customer would have to select the product that was featured on the solicitation. In order to determine the product that would have been selected absent any advertising effect, we use the estimated coefficients from the matched walk-in sample model (Table 8) to generate a prediction of whether the customer would select the adjustable-rate or fixed-rate product. We then compare the customer’s model prediction to their actual selection. Table 11 reports the frequency of persuaded versus informed consumers. Based on our classification scheme, we see that 74 percent of the borrowers were effectively “persuaded” by the bank’s direct mail solicitation. That is, these borrowers selected the product that was featured on the solicitation but was opposite the one predicted by the model. However, we also note that 26 percent of the customers were “informed” by the bank’s solicitation, since they selected the product predicted by the model and it was also featured on the solicitation.

Although the analysis above suggests that 74 percent of the DM customers were persuaded to select a product that was counter to the one predicted by our model, it is possible that our model has a high predictive error rate resulting in a large Type II error. Thus, to gain a greater appreciation for whether model predictive error can explain these results, we examine the model predictive accuracy using a hold-out sample of customers that were not exposed to the bank’s direct mail solicitation. Recall that the above analysis is based on the borrower choice model for the matched sample of 31,749 walk-in customers, leaving 76,386 walk-in customers as a defacto hold-out sample.

38 We use a 50 percent cutoff criteria to determine whether the customers should select the adjustable-rate product.
Thus, by estimating the predicted product choice for the hold-out walk-in customers, we are able to observe an unbiased estimate of the model’s predictive accuracy. Table 12 reports the results of this test. The results clearly indicate that the model’s predictive accuracy (using the 50 percent cutoff criteria) is very high. Table 12 shows that the model is able to predict the actual product choice for 85 percent of the customers implying a Type II error rate of 15 percent. In contrast, the predictive error rate for the direct mail customers is 74 percent. We feel that this is compelling evidence that the bank’s marketing campaign did have a persuasive effect.

As a final check, we also report in Table 12 the estimated prediction rate for the direct mail customers who switched products. Table 12 shows that the WI model is able to predict the actual product choice for 72 to 75 percent of the DM switchers implying Type II error of 28 to 25 percent. Recall from the analysis above, we found that the product choice model coefficients and marginal effects for the direct mail switchers are similar to the walk-in borrowers. Thus, it is not surprising that we find the predictive error rate for the DM switchers is similar to the error rate for the WI hold-out sample.

7.3 Summary

To summarize, our analysis reveals that borrower mortgage choice is sensitive to the economic environment. Yet, we also observe that a subset of borrowers who received solicitations or “cues” from the bank did not select a mortgage product in a manner consistent with theoretical expectations. Overall, the results suggest that the lender’s advertising campaign had a persuasive effect for a subset of borrowers who are less financially sophisticated.\footnote{A natural question arises as to whether the bank’s advertising had an “economic” impact on the borrower. Unfortunately, we are unable to calculate a direct cost. However, we note that fixed-rate products have higher interest rates than variable-rate products, and thus, borrowers who were steered to fixed-rate loans but who should have selected the variable rate line-of-credit did bear a higher interest cost. Greenspan (2004) has suggested that many borrowers may have incorrectly preferred fixed-rate products. However, it is also not the case that all borrowers persuaded to select the variable-rate contract benefited from such steering. Variable-rate products do expose borrowers to greater future interest rate risk, and as discussed in Section 2, theoretical models show that fixed-rate contracts should be preferred by some borrowers depending upon economic and demographic factors. As a result, borrowers who were persuaded to select the variable-rate line-of-credit were exposed to greater interest rate risk than appropriate since they should have selected the fixed-rate contract as suggested by the theoretical predictions based upon the prevailing economic conditions at the time of origination.}
8 Robustness Tests

One concern with our conclusion is that we may be attributing a persuasive effect to the bank’s marketing campaign for borrowers who may not care about the product they selected simply because the costs associated with making an “incorrect” decision are trivial. For example, our analysis could classify borrowers as being “persuaded” even if they originated a line-of-credit in order to have ready access to funds in the future. These borrowers would clearly not select a fixed-rate product, even if the economic environment pointed to it as the optimal choice, since they would not be utilizing the funds immediately. In order to test whether this effect could be responsible for our results, table 13 shows the average takedown (or utilization) rates at origination, month 12, and month 24 for the matched WI and DM customers who selected the line-of-credit and actually originated a loan. If the DM customers viewed the costs associated with the line-of-credit as trivial, then we would expect to find their utilization rates substantially lower than the WI customers. The results clearly reveal that the average utilization rates for WI and DM customers are comparable and thus do not support the hypothesis that the costs associated with selecting the line-of-credit are trivial.

As a final robustness check of whether the advertising was persuasive or informative, we examine the ex post origination performance of the applications that were actually booked. If the advertising was persuasive such that it caused borrowers to select a product inconsistent with their needs, then we would expect to observe these customers making adjustments over time. To test for this effect, we examine the loan prepayment rates over the one-month, three-month, and six-month periods after origination. These windows are sufficiently short such that exogenous factors (such as changes in interest rates or household mobility) should have a minimal impact on borrower prepayment decisions. If the persuaded borrowers learn that they selected an inappropriate product, then we should observe a higher prepayment rate for these borrowers than for borrowers that we identified as being informed or complemented.40

To examine the differences in prepayment, we identified all applications that ultimately resulted in loans or lines being booked. We note that approximately 89 percent of the DM and WI matched sample applications resulted in booked loans or lines (28,099 DM customers and 28,256 WI customers, respectively). For the customers identified by our model as being persuaded by the bank’s

40We note again that the home equity loans and lines were “no fee” products. Thus, the borrowers were able to repay their loans and lines without penalty.
solicitation, we note that approximately 90 percent of the applications resulted in booked loans or lines. Similarly, approximately 86 percent and 87 percent of the complemented and informed customer applications, respectively, resulted in booked loans or lines.

Turning first to the persuaded customers, we observed that 707 prepaid during the three months after origination, implying an unconditional prepayment rate of 4.3 percent. In contrast, we observed an unconditional three-month prepayment rate of 2.9 percent for the complemented (switchers) and informed customers.\footnote{We observed 172 prepayments out of 6,018 complemented borrowers (or switchers) and 163 prepayments out of 5,619 informed borrowers.} Furthermore, the unconditional three-month prepayment rate for the walk-in customers is 1.7 percent.\footnote{We observed that 491 out of the 28,256 walk-in loans booked prepaid within the first three months after origination.}

Table 14 reports the estimated coefficients for a simple logistic prepayment model.\footnote{Given the short time horizon of our prepayment model, we estimated the prepayment model using a logistic framework rather than with a hazard rate model.} Using the empirical mortgage performance literature to provide guidance in specifying the independent variables in the prepayment model, we estimated the following model:

\[
Pr(h_i = 1) = \Lambda(\beta X_i + \alpha L_i + \gamma A_i + \pi[L_i * A_i]),
\]

where \(h_i\) equals one if the mortgage prepays during the three-month period following origination, and zero otherwise; \(\Lambda\) represents the logistic cumulative distribution function; \(X_i\) is a matrix of explanatory variables, \(L_i\) is a dummy variable with \(L_i = 1\) if the contract is a line-of-credit and \(L_i = 0\) if the contract is a loan; \(A_i = [A^P_i, A^I_i, A^C_i]^T\) with \(A^k_i (k = P, I, C)\) equaling one if borrower \(i\) was identified as being persuaded (\(P\)), informed (\(I\)), or complemented (\(C\)).\footnote{The walk-in customers are the reference category.} We interact the product type dummy variable (\(L_i\)) with \(A_i\) in order to assess whether the prepayment rates differ across product and borrower type. Following Agarwal et al. (2006), we include in the set of explanatory variables (\(X\)), a series of variables designed to capture the financial incentives to repay the loan. The variables include the value of the borrower’s prepayment option (\(OPTION\)), an indicator of whether the prepayment option is “in-the-money” (\(InMoney\)), and a variable (\(DSpread\))
that captures the interaction of between *InMoney* and *OPTION*.45 Not surprising, given that we examine relatively short periods after origination, none of the financial variables are significant in the one-month and three-month models, indicating that changes in the economic environment in the months immediately following origination did not impact borrower prepayment behavior. In the six-month model, the borrower’s prepayment option value (*OPTION*), LTV, and FICO scores are positive and significant. Thus, the results from the six-month prepayment model indicate that as the length of time since origination increases changes in economic conditions and borrower heterogeneity begin to explain differences in prepayment rates. For example, the results show that after six-months, higher quality borrowers, borrowers with higher loan-to-value ratios at origination, and borrowers with greater financial incentive to prepay have a greater probability of exercising their prepayment option. In addition, the line-of-credit dummy variable (*L*) is positive and significant indicating a divergence of prepayment speeds based on product type six months after origination.

For the purposes of our study the most interesting results are the positive and significant coefficients associated with the variables indicating that the borrower was persuaded (*AP and *LAP*). This finding is consistent with the theory that persuaded borrowers may have recognized that they selected an inappropriate product. The marginal effects for *AP* suggest that the prepayment rate for a borrower persuaded to originate a line or loan is over three times as high as the prepayment rate experienced by the walk-in customers over the three-months following origination. Over the six-month window following origination, these borrowers have a prepayment rate that is almost four times greater than the walk-in group. In addition, the marginal effects for the interaction term (*LAP*) indicate that borrowers persuaded to originate lines-of-credit have higher prepayment speeds than the persuaded loan borrowers. Furthermore, the coefficients indicating whether the borrower was informed or complemented are insignificant, suggesting that the three-month prepayment rate for these borrowers is not statistically different from the prepayment rate for the walk-in customers. Thus, our analysis shows that the borrowers most likely to have made a mistake by following the bank’s advertising cue (the borrowers identified as being persuaded) are significantly more likely

45The *OPTION* variable follows Deng et al. (2000) and is calculated as

\[OPTION_i = \frac{V_i - V_i^*}{V_i},\]

where \(V_i\) is the present value of the remaining mortgage payments at the current market interest rate and \(V_i^*\) is the present value of the remaining mortgage payments at the contract interest rate.
to quickly prepay out of this product than the typical walk-in customer not exposed to the bank’s solicitation.

9 Conclusions

Financial economists now recognize that marketing and persuasion can have important effects on consumer decisions. In this paper, we examine the effect of direct mail (or junk mail) advertising on individual financial decisions by studying consumer choice of debt contracts.

The results from our analysis suggest that financial variables underlying the relative pricing of debt contracts are the leading factors explaining consumer debt choice. Furthermore, we also find that the intended use of the debt proceeds significantly affects consumer choice. In particular, we find that borrowers who intend to use the debt proceeds for consumption are 13 percent more likely to select the adjustable-rate line-of-credit and borrowers who are refinancing existing debt are approximately 16 percent less likely to choose the adjustable-rate line-of-credit than the borrowers who intend to use the funds for home improvements.

With respect to the impact of advertising on borrower choice, we find evidence that the lender’s advertising campaign had a persuasive effect on consumer contract choice. We arrive at this conclusion based on a variety of tests. First, we estimate a bivariate probit model to control for possible self-selection bias to analyze the impact of the bank’s solicitation. After controlling for the economic environment at the time of origination as well as all hard information captured on the credit application, we borrowers who received a line-of-credit solicitation were 17.4 percent more likely to originate a line-of-credit while borrowers who received a fixed-rate loan solicitation were 14.6 percent less likely to originate a line-of-credit. Second, we analyzed the bank’s marketing campaign using a multinomial logit framework that utilized the potential customers who were sent an application, but did not apply as a control group. This model allowed us to estimate the cross-product effects of the solicitation. The results revealed that the solicitation did have a substantial cross-product effect, supporting the complementary view of advertising. Third, we an analysis based on a matched sample design. This method reveals that none of the financial and demographic variables that are important for the control group’s product selection have an impact on the product choice decision for the direct mail sample. In fact, the customers who received a
direct mail line-of-credit solicitation are 45.3 percent more likely to select the line-of-credit product than the fixed-rate product. Furthermore, analysis of the product choice model coefficients for the group of borrowers who ignored the bank’s direct mail solicitation and selected the product not advertised reveals that the key financial and demographic variables have the same signs and magnitude as the control group. This finding suggests that the advertisement had a complementary effect for this set of borrowers. For the group of borrowers we identified as likely being persuaded, we find that the odds of prepayment over the three-month period after loan origination is almost four times higher than the prepayment rate experienced by the control group and over six times higher over the six months following origination. Finally, we note that a substantial (one-third) portion of the consumers who received a direct mail solicitation did not view the offer as persuasive because they remained sensitive to the economic environment as theory predicts. Thus, the evidence indicates that these consumers viewed the direct mail advertisement as complementary to their decision-making process.

The results from this study suggest that further research is needed in order to understand the reactions of individuals to various information cues. For example, in the wake of the on-going financial crisis in the mortgage and housing markets, banking and consumer regulatory agencies are exploring the issue of information disclosure in the residential mortgage market.46 Thus, being able to identify individuals who are most susceptible to financial advertisements may aid in identifying the type of information that is critical to making informed financial decisions. Yet, the results from this study indicate that the responses to bank marketing campaigns vary across individuals, implying that any regulatory action should reflect the heterogeneous responses of individuals to financial information.

46For example, the Federal Trade Commission Bureau of Economics held a conference ("Consumer Information and the Mortgage Market," May 29, 2008) in order to explore issues associated with consumer mortgage knowledge and consumer understanding of mortgage disclosures.
10 References

Brueckner, J. 1986. The Pricing of Interest Rate Caps and Consumer Choice in the market for

Table 1: Summary Statistics for Direct Mail Customers

<table>
<thead>
<tr>
<th>Variables</th>
<th>Bank Solicitations</th>
<th>Consumer Response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Loans</td>
<td>Lines</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>Std</td>
</tr>
<tr>
<td>FICO Score</td>
<td>722.6</td>
<td>42.8</td>
</tr>
<tr>
<td>State MA</td>
<td>22.7%</td>
<td>30.2%</td>
</tr>
<tr>
<td>State CT</td>
<td>10.8%</td>
<td>37.3%</td>
</tr>
<tr>
<td>State ME</td>
<td>5.7%</td>
<td>8.7%</td>
</tr>
<tr>
<td>State NH</td>
<td>4.4%</td>
<td>20.4%</td>
</tr>
<tr>
<td>State NJ</td>
<td>8.4%</td>
<td>27.7%</td>
</tr>
<tr>
<td>State NY</td>
<td>35.5%</td>
<td>47.6%</td>
</tr>
<tr>
<td>State PA</td>
<td>4.9%</td>
<td>9.6%</td>
</tr>
<tr>
<td>State RI</td>
<td>7.2%</td>
<td>25.7%</td>
</tr>
<tr>
<td>Frequency</td>
<td>.981 Million</td>
<td>2.072 Million</td>
</tr>
</tbody>
</table>

Note: This table shows the mean credit scores (FICO) for the recipients of the bank’s direct mail solicitation and the customers who responded to the solicitation. The table also reports the frequency distribution of mailings and responses by customer location (State).
Table 2: Summary Statistics for Walk-In and Direct Mail Customers

<table>
<thead>
<tr>
<th>Variables</th>
<th>Walk-In</th>
<th>Direct Mail</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer LTV</td>
<td>61.88</td>
<td>70.31</td>
<td></td>
</tr>
<tr>
<td>Appraised LTV</td>
<td>64.68</td>
<td>71.40</td>
<td></td>
</tr>
<tr>
<td>Borrower Estimated Home Value</td>
<td>$329,521</td>
<td>$299,334</td>
<td>$21,874</td>
</tr>
<tr>
<td>Appraised Home Value</td>
<td>$318,491</td>
<td>$286,330</td>
<td>$19,785</td>
</tr>
<tr>
<td>Requested Loan Amount</td>
<td>$66,664</td>
<td>$60,291</td>
<td>$4,024</td>
</tr>
<tr>
<td>Loan Amount Approved</td>
<td>$67,279</td>
<td>$61,123</td>
<td>$4,092</td>
</tr>
<tr>
<td>APR</td>
<td>5.46</td>
<td>5.45</td>
<td>1.06</td>
</tr>
<tr>
<td>FICO Score</td>
<td>728.02</td>
<td>724.40</td>
<td>41.03</td>
</tr>
<tr>
<td>Debt to Income</td>
<td>38.17</td>
<td>27.89</td>
<td>14.49</td>
</tr>
<tr>
<td>Consumption</td>
<td>30%</td>
<td>28%</td>
<td>42%</td>
</tr>
<tr>
<td>Refinancing</td>
<td>46%</td>
<td>48%</td>
<td>48%</td>
</tr>
<tr>
<td>Years on the Job</td>
<td>7.85</td>
<td>4.57</td>
<td>2.81</td>
</tr>
<tr>
<td>Income</td>
<td>$122,241</td>
<td>$110,694</td>
<td>$71,919</td>
</tr>
<tr>
<td>Borrower Age</td>
<td>46.51</td>
<td>46.52</td>
<td>11.25</td>
</tr>
<tr>
<td>First Mortgage Balance</td>
<td>$143,361</td>
<td>$132,991</td>
<td>$108,955</td>
</tr>
<tr>
<td>Months at Address</td>
<td>99.20</td>
<td>86.14</td>
<td>26.62</td>
</tr>
<tr>
<td>Self Employed</td>
<td>7%</td>
<td>6%</td>
<td>23%</td>
</tr>
<tr>
<td>Retired</td>
<td>8%</td>
<td>2%</td>
<td>13%</td>
</tr>
<tr>
<td>Home Maker</td>
<td>1%</td>
<td>1%</td>
<td>10%</td>
</tr>
<tr>
<td>Married</td>
<td>53%</td>
<td>48%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Note: Customer LTV is the loan-to-value ratio based on the requested loan amount and the borrower’s self-reported house value. Appraised LTV is the bank’s loan-to-value ratio based on the approved loan amount and independent property appraisal. APR is the effective contract interest rate on the loan product selected. FICO is the borrower’s credit quality score at application. Debt-to-income is the ratio of the borrower’s debt to total income. Income is the borrower’s income at date of application. Consumption is a dummy variable indicating that the borrower intends to use the loan/line proceeds for consumption purposes. Refinancing is a dummy variable indicating that the borrower is using the loan/line proceeds to refinance existing debt. Home improvement is the omitted use of funds. Self Employed, Retired, Home Maker, and Married are dummy variables indicating the borrower’s respective employment and marriage status.
Table 3: Demographic Characteristics of Walk-In and Direct Mail Customers’ Locations

<table>
<thead>
<tr>
<th></th>
<th>Direct Mail (Mailings)</th>
<th>Direct Mail (Response)</th>
<th>Walk-Ins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Loans</td>
<td>Lines</td>
<td>Loans</td>
</tr>
<tr>
<td>Median Age</td>
<td>37.71</td>
<td>37.70</td>
<td>37.58</td>
</tr>
<tr>
<td></td>
<td>(5.38)</td>
<td>(5.19)</td>
<td>(5.33)</td>
</tr>
<tr>
<td>Median Income</td>
<td>$50,400.83</td>
<td>$50,677.17</td>
<td>$50,698.97</td>
</tr>
<tr>
<td></td>
<td>($19,266.53)</td>
<td>($19,540.89)</td>
<td>($19,617.34)</td>
</tr>
<tr>
<td>% Female</td>
<td>50.86%</td>
<td>50.15%</td>
<td>50.32%</td>
</tr>
<tr>
<td></td>
<td>(2.57%)</td>
<td>(2.56%)</td>
<td>(2.53%)</td>
</tr>
<tr>
<td>% Black</td>
<td>6.99%</td>
<td>7.00%</td>
<td>7.08%</td>
</tr>
<tr>
<td></td>
<td>(13.65%)</td>
<td>(13.55%)</td>
<td>(13.70%)</td>
</tr>
<tr>
<td>Number of Zip Codes</td>
<td>4,622</td>
<td>4,668</td>
<td>4,577</td>
</tr>
</tbody>
</table>

Note: This table reports the demographic characteristics’ means and standard deviations (in parentheses) for the zip codes corresponding to the resident locations of the walk-in customers and the direct-mail recipients based on whether the borrower selected a line-of-credit or a loan. The statistics are calculated by weighting by the number of customers in each zip code. The columns under “Direct Mail (Mailings)” refer to the zip codes (neighborhoods) associated with recipients of the bank’s direct mail solicitation. The columns under “Direct Mail (Response)” refer to the zip codes (neighborhoods) of the customers who responded to the solicitation. The columns under “Walk-Ins” refer to the zip codes (neighborhoods) of the walk-in customers.
Table 4: **First-Stage Sample Selection Model**

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>P-value</th>
<th>Marginal Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.5381</td>
<td>0.0194</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Solicitation FICO Score</td>
<td>-0.0005</td>
<td>0.0002</td>
<td>0.0271</td>
<td>-0.01%</td>
</tr>
</tbody>
</table>

Zip Code Fixed Effects Yes
Campaign Fixed Effects Yes

Number of Observations 3.01 Million
Pseudo-Rsq 17.92%

Notes: This table reports the maximum-likelihood parameter estimates for the first-stage bivariate probit model of whether the household responded to the direct mail solicitation. The dependent variable in is a dummy variable equal to 1 if the household responded to the solicitation and 0 otherwise. The independent variable, FICO, is the borrower’s credit quality score at the time of the bank’s solicitation. The Standard Errors are corrected for Heteroskedasticity using the two-dimensional clustering procedure of Petersen (2008).
Table 5: Second Stage Bivariate Probit Model of Borrower Home-Equity Choice

<table>
<thead>
<tr>
<th>Coeff. Value</th>
<th>Standard Error</th>
<th>P-value</th>
<th>Marginal Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-7.9871</td>
<td>0.2532</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Economic Environment Variables:
- Outside Option Rate Difference (FRM-ARM) 0.2646 0.0567 <.0001 12.83%
- Outside Option FRM APR% 0.2999 0.0474 <.0001 17.38%

Loan-to-Variables:
- Ln(Borrower Estimate of the House Value) 0.0051 0.0017 <.0001 1.36%
- Ln(Loan Amount Requested) 0.0044 0.0007 <.0001 1.49%

Borrower Stated Use of Funds:
- Consumption 1.1031 0.0233 <.0001 12.88%
- Refinancing -0.9300 0.0195 <.0001 -16.63%

Borrower Characteristics
- FICO 0.0060 0.0001 <.0001 0.04%
- Debt to Income -0.0138 0.0005 <.0001 -0.03%
- Borrower Age 0.0010 0.0008 <.0001 0.17%
- Years on the Job 0.0518 0.0104 <.0001 4.73%
- Ln(First Mortgage Balance) 0.0699 0.0104 <.0001 4.60%
- Ln(Months at Address) 0.0256 0.0080 <.0001 4.60%
- Self Employed 0.3757 0.0329 <.0001 2.19%
- Retired -0.3968 0.0415 <.0001 -0.95%
- Home Maker -0.3277 0.0660 <.0001 -0.31%
- Married -0.1605 0.0158 <.0001 -1.89%

Direct Mail solicitation Effects
- DM Line Offer Dummy \((I^v)\) 0.2204 0.0531 <.0001 16.69%
- DM Loan Offer Dummy \((I^f)\) -0.2008 0.0339 <.0001 -14.17%

Interaction Variables
- \(I^v \times \text{FICO Score}\) 0.0025 0.0005 <.0001 0.03%
- \(I^f \times \text{FICO Score}\) -0.0035 0.0004 <.0001 -0.05%
- \(I^v \times \text{Log(Income)}\) 0.0049 0.0429 0.929 0.02%
- \(I^f \times \text{Log(Income)}\) -0.0055 0.0717 0.9543 -0.02%
- \(I^v \times \text{Outside Option}\) -0.2059 0.1941 0.5735 -0.01%
- \(I^f \times \text{Outside Option}\) -0.1851 0.5052 0.881 -0.03%
- \(I^v \times \text{FRM APR}\%\) -0.2596 0.5127 0.8907 -0.02%
- \(I^f \times \text{FRM APR}\%\) -0.2037 0.2636 0.4461 -0.01%
- \(I^v \times \text{Consumption}\) 0.1971 0.0651 <.0001 5.88%
- \(I^f \times \text{Consumption}\) 0.4633 0.1866 0.0048 1.46%
- \(I^v \times \text{Refinancing}\) -0.1037 0.0427 0.027 -1.59%
- \(I^f \times \text{Refinancing}\) -0.3164 0.0844 <.0001 -6.89%

Additional Controls
- Rho 0.2604 0.1758 0.475 0.20%
- Month Loan Origination Dummies Yes
- State Location Control Dummies Yes

| Number of Observations | 139,866 |
| Pseudo R-sq | 26.18% |

Notes to Table 5: This table reports the maximum-likelihood parameter estimates for the bivariate probit model of borrower home-equity choice. The dependent variable equals one if the borrower selected a variable rate line-of-credit and zero otherwise. Application FICO is the borrower’s credit quality score at application. Outside Option Rate Difference is between the borrower’s selected contract rate and the “outside” option contract rate. The “outside” option is the contract not selected and the rate is the contract rate that would have been offered to the borrower at origination. Outside Option FRM APR% is the fixed-rate home equity loan interest rate in effect at the time of origination. Debt-to-income is the ratio of the borrower’s debt to total income. Income is the borrower’s income at date of application. \(I^v\) and \(I^f\) are a dummy variables indicating that the borrower received a line-of-credit or a home equity loan solicitation, respectively. \(I^v = I^f = 0\) for borrowers who did not receive a solicitation (the walk-in customers). Consumption is a dummy variable indicating that the borrower intends to use the loan/line proceeds for consumption purposes. Refinancing is a dummy variable indicating that the borrower intends to use the loan/line proceeds to refinance existing debt. The omitted category is “home improvement”. Self Employed, Retired, Home Maker, and Married are dummy variables indicating the borrower’s respective employment and marriage status. Following Ai and Norton (2003), the marginal effects for the interaction variables are calculated as
\[\frac{\partial^2 \Phi(\cdot)}{\partial I_i \partial X_{it}} = \pi_R \Phi'(\cdot) + (\beta + \pi_R I_i)(\alpha + \pi_R X_{it}') \Phi''(\cdot) \]
and
\[\frac{\partial^2 \Phi(\cdot)}{\partial I_i \partial X_{it}} = \pi_E \Phi'(\cdot) + (\beta + \pi_E I_i)(\alpha + \pi_E X_{it}') \Phi''(\cdot) \]
The Standard Errors are corrected for Heteroskedasticity using the two-dimensional clustering procedure of Petersen (2008).
Table 6: Analysis of the Effect of Applicant Selection versus Advertisement

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>Marginal</th>
<th>P-value</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.7161</td>
<td>0.0164</td>
<td>0.0001</td>
<td>0.0018</td>
<td>8.86%</td>
</tr>
<tr>
<td>FICO Score</td>
<td>-0.0929</td>
<td>0.0191</td>
<td>0.0001</td>
<td>0.0041</td>
<td>8.05%</td>
</tr>
<tr>
<td>Median Age</td>
<td>0.1925</td>
<td>0.3619</td>
<td>0.8203</td>
<td>0.3437</td>
<td>-0.03%</td>
</tr>
<tr>
<td>Median Income</td>
<td>0.0004</td>
<td>0.0003</td>
<td>0.8727</td>
<td>0.2933</td>
<td>-0.03%</td>
</tr>
<tr>
<td>% Female</td>
<td>-0.2946</td>
<td>0.1978</td>
<td>0.3417</td>
<td>0.0001</td>
<td>8.51%</td>
</tr>
<tr>
<td>% Black</td>
<td>-0.0370</td>
<td>0.0237</td>
<td>0.1397</td>
<td>0.3437</td>
<td>-0.03%</td>
</tr>
<tr>
<td>House Price</td>
<td>0.0842</td>
<td>0.0287</td>
<td>0.0001</td>
<td>0.0166</td>
<td>8.05%</td>
</tr>
<tr>
<td>Loan Solicitation</td>
<td>0.0553</td>
<td>0.0130</td>
<td>0.0001</td>
<td>0.0202</td>
<td>8.65%</td>
</tr>
<tr>
<td>Line Solicitation</td>
<td>0.0607</td>
<td>0.0176</td>
<td>0.0001</td>
<td>0.0278</td>
<td>6.57%</td>
</tr>
</tbody>
</table>

Note: This table presents the estimated coefficients for the multinomial logit model of applicant choice. The sample comprises all individuals sent a solicitation by the lender and all customers that applied for a home equity credit but were not sent a solicitation. For the set of customers that did not apply, we only observe their credit (FICO) score and location. Thus, we utilize the individual's zip-code level demographic characteristics (Age, Income, Gender, Race, and House price) as control variables for these customers. The variables Loan Solicitation and Line Solicitation indicate whether the individual received a HEL or HELOC solicitation, respectively. Thus, for walk-in applicants, $\text{If} = \text{Iv} = 0$. The multinomial logit model is estimated via maximum likelihood.
Table 7: Summary Statistics for the Matched Sample Walk-In (WI) and Direct Mail (DM) Customers Based On Credit Choice

<table>
<thead>
<tr>
<th></th>
<th>Fixed-rate Home Equity Loans</th>
<th>Variable Rate Home Equity Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Walk-In</td>
<td>Direct Mail</td>
</tr>
<tr>
<td>Variables</td>
<td>Mean</td>
<td>Std</td>
</tr>
<tr>
<td>Customer LTV</td>
<td>72.9</td>
<td>25.2</td>
</tr>
<tr>
<td>Appraised LTV</td>
<td>72.5</td>
<td>26.2</td>
</tr>
<tr>
<td>Borrower Estimated Home Value</td>
<td>$216,922</td>
<td>$133,379</td>
</tr>
<tr>
<td>Appraised Home Value</td>
<td>$208,924</td>
<td>$148,383</td>
</tr>
<tr>
<td>Requested Loan Amount</td>
<td>$48,102</td>
<td>$18,981</td>
</tr>
<tr>
<td>Loan Amount Approved</td>
<td>$46,579</td>
<td>$19,724</td>
</tr>
<tr>
<td>APR</td>
<td>7.85</td>
<td>1.13</td>
</tr>
<tr>
<td>FICO Score</td>
<td>715.3</td>
<td>43.1</td>
</tr>
<tr>
<td>Debt to Income</td>
<td>33.7</td>
<td>19.0</td>
</tr>
<tr>
<td>Consumption</td>
<td>17%</td>
<td>33%</td>
</tr>
<tr>
<td>Refinancing</td>
<td>77%</td>
<td>44%</td>
</tr>
<tr>
<td>Years on the Job</td>
<td>3.7</td>
<td>8.5</td>
</tr>
<tr>
<td>Income</td>
<td>$97,020</td>
<td>$69,009</td>
</tr>
<tr>
<td>Borrower Age</td>
<td>48.8</td>
<td>11.8</td>
</tr>
<tr>
<td>First Mortgage Balance</td>
<td>$109,717</td>
<td>$63,618</td>
</tr>
<tr>
<td>Months at Address</td>
<td>80.1</td>
<td>117.4</td>
</tr>
<tr>
<td>Self Employed</td>
<td>5%</td>
<td>22%</td>
</tr>
<tr>
<td>Retired</td>
<td>4%</td>
<td>20%</td>
</tr>
<tr>
<td>Home Maker</td>
<td>1%</td>
<td>7%</td>
</tr>
<tr>
<td>Married</td>
<td>53%</td>
<td>50%</td>
</tr>
<tr>
<td>Frequency</td>
<td>9,021</td>
<td>11,249</td>
</tr>
</tbody>
</table>

Note: The walk-in sample was created using the nearest centroid sorting algorithm based on the Euclidean distances computed over all demographic and financial variables within a zip code. Customer LTV is the loan-to-value ratio based on the requested loan amount and the borrower’s self-reported house value. Appraised LTV is the bank’s loan-to-value ratio based on the approved loan amount and independent property appraisal. APR is the effective contract interest rate on the loan product selected. FICO is the borrower’s credit quality score at application; Debt-to-income is the ratio of the borrower’s debt to total income; Income is the borrower’s income at date of application. Consumption is a dummy variable indicating that the borrower intends to use the loan/line proceeds for consumption purposes. Refinancing is a dummy variable indicating that the borrower is using the loan/line proceeds to refinance existing debt. The omitted category is “home improvement”. Self Employed, Retired, Home Maker, and Married are dummy variables indicating the borrower’s respective employment and marriage status.
Table 8: Consumer Choice Between Fixed- and Adjustable-Rate Home Equity

<table>
<thead>
<tr>
<th>Walk-in Consumers</th>
<th>Direct Mail Consumers</th>
<th>Direct Mail Consumers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient Value</td>
<td>Standard Error</td>
<td>P-value</td>
</tr>
<tr>
<td>Intercept</td>
<td>-9.6299</td>
<td>1.4418</td>
</tr>
<tr>
<td>Economic Environment Variables:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outside Option (Rate Diff FRM-ARM)</td>
<td>0.3587</td>
<td>0.0478</td>
</tr>
<tr>
<td>Outside Option FRM APR</td>
<td>0.1365</td>
<td>0.0251</td>
</tr>
<tr>
<td>Lona-to-Value Variables:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln(Borrower Estimate of the House Value)</td>
<td>0.0024</td>
<td>0.0002</td>
</tr>
<tr>
<td>Ln(Loan Amount Requested)</td>
<td>0.0014</td>
<td>0.0002</td>
</tr>
<tr>
<td>Borrower Stated Use of Funds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption</td>
<td>0.8127</td>
<td>0.0888</td>
</tr>
<tr>
<td>Refinancing</td>
<td>-1.2024</td>
<td>0.0639</td>
</tr>
<tr>
<td>Borrower Characteristics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FICO</td>
<td>0.0603</td>
<td>0.0007</td>
</tr>
<tr>
<td>Debt to Income</td>
<td>-0.0168</td>
<td>0.0020</td>
</tr>
<tr>
<td>Ln(Income)</td>
<td>0.0752</td>
<td>0.0184</td>
</tr>
<tr>
<td>Borrower Age</td>
<td>0.0037</td>
<td>0.0012</td>
</tr>
<tr>
<td>Years on the Job</td>
<td>0.0205</td>
<td>0.0033</td>
</tr>
<tr>
<td>Ln(First Mortgage Balance)</td>
<td>0.1983</td>
<td>0.0417</td>
</tr>
<tr>
<td>Ln(Months at Address)</td>
<td>0.2133</td>
<td>0.0296</td>
</tr>
<tr>
<td>Self Employed</td>
<td>0.0470</td>
<td>0.0865</td>
</tr>
<tr>
<td>Retired</td>
<td>-0.3308</td>
<td>0.1485</td>
</tr>
<tr>
<td>Home Maker</td>
<td>-0.1379</td>
<td>0.0327</td>
</tr>
<tr>
<td>Married</td>
<td>-0.2473</td>
<td>0.0561</td>
</tr>
<tr>
<td>Line Solicitation (IV)</td>
<td>2.1446</td>
<td>0.5726</td>
</tr>
</tbody>
</table>

Notes: This table reports the maximum-likelihood parameter estimates, relevant marginal impacts, and P-values (in parentheses) for the probit model of whether the customer selected the adjustable-rate product. The dependent variable is a dummy variable equal to 1 if the customer selected the ARM and 0 otherwise. Outside Option Rate Difference is between the borrower’s selected contract rate and the “outside” option contract rate. The “outside” option is the contract not selected and the rate is the contract rate that would have been offered to the borrower at origination. Outside Option FRM APR% is the fixed-rate home equity loan interest rate in effect at the time of origination. FICO is the borrower’s credit quality score at application; Debt-to-income is the ratio of the borrower’s debt to total income; Income is the borrower’s income at date of application. Consumption is a dummy variable indicating that the borrower intends to use the loan/line proceeds for consumption purposes. Refinancing is a dummy variable indicating that the borrower is using the loan/line proceeds to refinance existing debt. The omitted category is “home improvement.” Self Employed, Retired, Home Maker, and Married are dummy variables indicating the borrower’s respective employment and marriage status. Line Solicitation (IV) indicates whether the individual received a HELOC solicitation. The Standard Errors are corrected for Heteroskedasticity using the two-dimensional clustering procedure of Petersen (2008).
Table 9: Analysis of Direct Mail Switcher Choice

<table>
<thead>
<tr>
<th></th>
<th>Coefficient Value</th>
<th>Standard Error</th>
<th>P-value</th>
<th>Marginal Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-5.02870</td>
<td>1.52845</td>
<td><.0001</td>
<td></td>
</tr>
</tbody>
</table>

Economic Environment Variables:

- **Outside Option (Rate Diff FRM-ARM)**: 0.27212, 0.04620, <.0001, 12.15%
- **Outside Option FRM APR**: 0.17237, 0.01282, <.0001, 8.43%

Loan-to-Value Variables:

- **Ln(Borrower Estimate of the House Value)**: 0.00613, 0.00018, <.0001, 1.96%
- **Ln(Loan Amount Requested)**: 0.00385, 0.00014, 0.0201, 1.06%

Borrower Stated Use of Funds:

- **Consumption**: 1.10815, 0.11210, <.0001, 10.28%
- **Refinancing**: -0.71249, 0.05458, <.0001, -11.95%

Borrower Characteristics:

- **FICO**: 0.00151, 0.00059, <.0001, 0.02%
- **Debt to Income**: -0.02870, 0.00269, <.0001, -0.03%
- **Ln(Income)**: 0.19226, 0.05149, <.0001, 3.98%
- **Borrower Age**: 0.00407, 0.00249, 0.0959, 0.11%
- **Years on the Job**: 0.01625, 0.00769, 0.0189, 0.12%
- **Ln(First Mortgage Balance)**: 0.08561, 0.03627, 0.024, 2.03%
- **Ln(Months at Address)**: 0.00275, 0.00075, <.0001, 0.93%
- **Self Employed**: 0.00899, 0.08236, 0.92, 0.29%
- **Retired**: -0.45621, 0.18234, 0.0143, -1.30%
- **Home Maker**: -0.19746, 0.19411, 0.398, -0.24%
- **Married**: -0.06336, 0.08427, 0.569, -0.24%

- **Month Loan Origination Dummies**: Yes
- **State Location Control Dummies**: Yes

Number of Observations: 6998

Pseudo R-sq: 18.97%

Notes: This table reports the maximum-likelihood parameter estimates for the probit model of whether the direct mail customers selected the adjustable-rate product. The dependent variable is a dummy variable equal to 1 if the customer selected the line-of-credit and 0 otherwise. Outside Option Rate Difference is between the borrower’s selected contract rate and the “outside” option contract rate. The “outside” option is the contract not selected and the rate is the contract rate that would have been offered to the borrower at origination. Outside Option FRM APR% is the fixed-rate home equity loan interest rate in effect at the time of origination. FICO is the borrower’s credit quality score at application; Debt-to-income is the ratio of the borrower’s debt to total income; Income is the borrower’s income at date of application. Consumption is a dummy variable indicating that the borrower intends to use the loan/line proceeds for consumption purposes. Refinancing is a dummy variable indicating that the borrower is using the loan/line proceeds to refinance existing debt. The omitted category is “home improvement.” Self Employed, Retired, Home Maker, and Married are dummy variables indicating the borrower’s respective employment and marriage status. The Standard Errors are corrected for Heteroskedasticity using the two-dimensional clustering procedure of Petersen (2008).
Table 10: Analysis of Decision to Switch Away from Product Offered in Direct Mail Solicitation

<table>
<thead>
<tr>
<th></th>
<th>Coeff. Val</th>
<th>Std. Err</th>
<th>P-value</th>
<th>Marg Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>8.2849</td>
<td>0.0701</td>
<td><.0001</td>
<td></td>
</tr>
</tbody>
</table>

Loan-to-Value Variables:
- Ln(Borrower Estimate of the House Value) -0.0040 0.0006 <.0001 1.45%
- Ln(Loan Amount Requested) 0.0020 0.0004 <.0001 0.10%

Borrower Stated Use of Funds:
- Consumption -0.2410 0.0450 <.0001 -5.64%
- Refinancing 0.0042 0.0141 0.7722 2.71%

Borrower Characteristics:
- FICO 0.0209 0.0014 <.0001 0.48%
- Debt to Income -0.0238 0.0026 <.0001 0.00%
- Ln(Income) 0.0220 0.0098 0.0258 2.07%
- Borrower Age -0.1259 0.0123 <.0001 -3.29%
- Years on the Job 0.3505 0.0109 <.0001 0.10%
- Ln(First Mortgage Balance) -0.0132 0.0095 0.1694 -1.97%
- Ln(Months at Address) -0.1035 0.0080 <.0001 -0.63%
- Self Employed -0.0744 0.0024 <.0001 -0.04%
- Retired -0.0382 0.0050 <.0001 -0.17%
- Home Maker -0.0006 0.0002 <.0001 -0.06%
- Married 1.4110 0.0076 <.0001 0.00%

Month Loan Origination Dummies: Yes
State Location Control Dummies: Yes
Number of Observations: 31,749
Pseudo R-sq: 7.93%

Notes: This table reports the maximum-likelihood parameter estimates for the logit model of whether the customer selected the alternative product from the one contained in the direct mail solicitation. The dependent variable is a dummy variable equal to 1 if the customer switched and 0 otherwise. FICO is the borrower’s credit quality score at application; Debt-to-income is the ratio of the borrower’s debt to total income; Income is the borrower’s income at date of application. Consumption is a dummy variable indicating that the borrower intends to use the loan/line proceeds for consumption purposes. Refinancing is a dummy variable indicating that the borrower is using the loan/line proceeds to refinance existing debt. The omitted category is “home improvement.” Self Employed, Retired, Home Maker, and Married are dummy variables indicating the borrower’s respective employment and marriage status. Standard Errors are corrected for Heteroskedasticity using the two-dimensional clustering procedure of Petersen (2008).
Table 11: **Analysis of Persuaded versus Informed Consumers**

<table>
<thead>
<tr>
<th>Mailed ARM</th>
<th>Predicted FRM</th>
<th>Predicted ARM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mailed ARM</td>
<td></td>
</tr>
<tr>
<td>Mailed ARM</td>
<td>15,877</td>
<td>12,336</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,541</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>14%</td>
</tr>
<tr>
<td>Mailed FRM</td>
<td>8,874</td>
<td>2,918</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5,956</td>
</tr>
<tr>
<td></td>
<td>12%</td>
<td>24%</td>
</tr>
</tbody>
</table>

Notes: This table reports the frequency of customers identified as either persuaded or informed. For all direct mail borrowers who did not switch products, we estimated the predicted product that they should select based on the coefficients from the walk-in mortgage choice model (Table 8). We then compare the predicted choice to the actual choice based on whether the borrower received an adjustable-rate (ARM) or fixed-rate (FRM) solicitation. The persuaded borrowers selected the product opposite to the one predicted and are noted in bold. Informed borrowers selected the product that is consistent with the one predicted and are noted in italics. Borrowers following into the (⋯) cells selected the predicted product and thus ignored the bank’s advertising.

Table 12: **Walk-in and Direct Mail Customer Prediction Error Rates**

<table>
<thead>
<tr>
<th>Actual Selection</th>
<th>Walk-in Customer Predicted Selection</th>
<th>Direct Mail Customer Predicted Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM</td>
<td>FRM</td>
</tr>
<tr>
<td>ARM</td>
<td>48,345</td>
<td>8,167</td>
</tr>
<tr>
<td></td>
<td>85.5%</td>
<td>14.5%</td>
</tr>
<tr>
<td>FRM</td>
<td>3,056</td>
<td>16,800</td>
</tr>
<tr>
<td></td>
<td>15.4%</td>
<td>84.6%</td>
</tr>
<tr>
<td>Total</td>
<td>51,401</td>
<td>24,967</td>
</tr>
</tbody>
</table>

Notes: This table reports the predicted walk-in and direct mail customer selection error rate. For all walk-in customers who were not included in the matched-sample analysis and all direct-mail customers who switched products, we estimated the predicted product that they would have selected based on the coefficients from the matched sample walk-in mortgage choice model (Table 8). We then compare the predicted choice to the actual choice. Effectively, this test provides an indication of the predictive accuracy of the estimated mortgage choice model using a hold-out sample.

Table 13: **Average Line-Of-Credit Takedown Rate**

<table>
<thead>
<tr>
<th></th>
<th>Month 0</th>
<th>Month 12</th>
<th>Month 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walk-in</td>
<td>58.9%</td>
<td>63.2%</td>
<td>67.1%</td>
</tr>
<tr>
<td>Direct Mail</td>
<td>60.3%</td>
<td>63.7%</td>
<td>66.0%</td>
</tr>
</tbody>
</table>

Notes: This table reports the average line-of-credit takedown (utilization) rate at origination, month 12, and month 24. The utilization rate is the amount of funds drawn expressed as a percent of total credit line available.
Table 14: Prepayment Behavior of Home Equity Loans and Lines

<table>
<thead>
<tr>
<th></th>
<th>1-Month Prepay Model</th>
<th>3-Month Prepay Model</th>
<th>6-Month Prepay Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient (Std. Error)</td>
<td>Marginal Effects</td>
<td>Coefficient (Std. Error)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-2.1375*** (0.24)</td>
<td>-2.9068*** (0.30)</td>
<td>-2.2516*** (0.28)</td>
</tr>
<tr>
<td>Log(FICO)</td>
<td>0.1102 (0.10)</td>
<td>0.1179 (0.11)</td>
<td>0.1474*** (0.06)</td>
</tr>
<tr>
<td>LTV</td>
<td>0.0275 (0.02)</td>
<td>0.0206 (0.03)</td>
<td>0.0858*** (0.03)</td>
</tr>
<tr>
<td>OPTION</td>
<td>0.0148 (0.02)</td>
<td>0.0126 (0.03)</td>
<td>0.0325*** (0.03)</td>
</tr>
<tr>
<td>InMoney</td>
<td>-0.0216 (0.08)</td>
<td>-0.0231 (0.09)</td>
<td>-0.0228 (0.10)</td>
</tr>
<tr>
<td>DSpread</td>
<td>0.0119 (0.04)</td>
<td>0.0115 (0.06)</td>
<td>0.0212 (0.05)</td>
</tr>
<tr>
<td>Lines (L)</td>
<td>0.1127 (0.13)</td>
<td>0.1748 (0.10)</td>
<td>0.1365*** (0.06)</td>
</tr>
<tr>
<td>Persuaded (Aₚ)</td>
<td>0.2964*** (0.12)</td>
<td>0.4554*** (0.13)</td>
<td>0.3674*** (0.13)</td>
</tr>
<tr>
<td>Informed (Aᵢ)</td>
<td>0.1474 (0.14)</td>
<td>0.1481 (0.12)</td>
<td>0.1314 (0.15)</td>
</tr>
<tr>
<td>Complemented (Aᶜ)</td>
<td>0.0872 (0.17)</td>
<td>0.1453 (0.18)</td>
<td>0.1218 (0.15)</td>
</tr>
<tr>
<td>Lines (L)*Persuaded (Aₚ)</td>
<td>0.2883*** (0.14)</td>
<td>0.3845*** (0.18)</td>
<td>0.3388*** (0.13)</td>
</tr>
<tr>
<td>Lines (L)*Informed (Aᵢ)</td>
<td>0.1171 (0.14)</td>
<td>0.1244 (0.11)</td>
<td>0.1237 (0.14)</td>
</tr>
<tr>
<td>Lines (L)*Complemented (Aᶜ)</td>
<td>0.0956 (0.17)</td>
<td>0.1106 (0.19)</td>
<td>0.1167 (0.14)</td>
</tr>
</tbody>
</table>

Other Controls: Yes Yes Yes
State Dummies: Yes Yes Yes
Time Dummies: Yes Yes Yes
Number of Prepay: 947 1,533 3,717
Number of Obs.: 56,355 56,355 56,355
Pseudo R²: 1.48% 1.73% 1.92%

Note: This table reports the maximum-likelihood parameter estimates for the logistic one-month, three-month, and six-month prepayment models. The dependent variable equals one if the borrower prepaid the mortgage during the one-month, three-month, or six-month period following origination and zero otherwise. FICO is the borrower’s credit quality score at application; LTV is the loan-to-value ratio at application; OPTION is the value of the borrower’s prepayment option reflecting the difference between the market rate of interest and the contract interest rate; InMoney indicates whether the prepayment option is ‘in-the-money’; DSpread is the interaction of InMoney and OPTION; Persuaded, Informed, and Complemented are indicator variables denoting whether the borrower was persuaded, informed or complemented by the bank’s direct mail solicitation (walk-in customers are the reference category.) (L) indicates whether the individual received a line-of-credit solicitation. Standard Errors are reported in parentheses and are corrected for Heteroskedasticity using the two-dimensional clustering procedure of Petersen (2008). *** - indicates significance at the 1% level.