The Internet-of-Things (IoT)
Intelligent Global Positioning Software (IGPS)
Andrew Kallinikos, Amir Danial Mohd Azrin, James Heradda

System Model & Goals

User inputs destination into IGPS. IGPS gathers data from other IGPS users and traffic light data. IGPS sends back a suggested route and departure time based on the least time it would take to travel and least amount stops along the way. It will also factor in any potential stops based off of previous preferences.

Basic Concept

Through the use of GPS and cellular networks, IGPS will revolutionize the way we travel. IGPS goes beyond what we use today. As you use IGPS it learns from you and begins to figure out your daily routine, even going so far as to order what you want for lunch.

Day in the Life

You wake up for work at 7:15 and grab your smartphone. IGPS has determined your ideal route and departure time of 7:40 for the least amount of stops and traffic. It has even included your favorite Dunkin Donuts and ordered your preferred coffee and donut. It will be ready for pickup at 7:45. You get in your car and via the cloud, your route displays on your GPS system. After picking up your coffee and donut, IGPS receives a traffic accident alert from other IGPS devices and immediately reroutes you, preventing you from being late. You pull into the parking lot at 8:10 with 20 minutes kill before you start the day.

Development and Marketing

We plan to develop IGPS with Garmin a leader in GPS technology. We will market it through Google and Apple.

Acknowledgments

Amr Salah Elnashai, PhD, Dean of College of Engineering
Dr Sven Bilen, PE, SEDTAPP Head of Department
James Berezniak, PE, Course Instructor
Christine Goodwin, AT&T University Relations Manager

References