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Abstract

We use the computational method proposed by Severini and Tripathi (2001) to obtain semi-

parametric efficiency bounds in linear models with nonparametric regressors in the form of con-

ditional expectations. Examples include social-interaction models. Explicit efficiency bounds

for these models, with the degree of generality assumed here, had not been described before.

JEL Codes: C14.

1 Introduction

This note computes the semiparametric efficiency bound for linear models that include nonparamet-

ric regressors –in this case, conditional expectations. Notable examples include social-interactions

models. Our derivation uses the method of “representers” proposed by Severini and Tripathi (2001).

The bound described here is new in the literature given the level of generality assumed.

2 Computing efficiency bounds using representers: an outline

Here we will outline the approach we will use to compute the bounds. Our discussion follows

Section 2 in Severini and Tripathi (2001) (henceforth ST).

Notational conventions

We will let S(z) denote the support of a random variable z. λ will denote the Lebesgue measure

and L2(S, λ), the set of all real-valued functions on S that are square integrable with respect to
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Lebesgue measure. For a random variable z, we will let L2(S, λz) denote the set of all functions

defined on S which are square integrable with respect to the probability distribution of z.

Let z1, . . . , zn be d× 1 iid random vectors with Lebesgue density p0(z). Assume for simplicity

that p0 has full support1 on Rd and let us express2 p0(z) = τ2
0 (z), with τ0 ∈ Γ and Γ is a subset

of the unit ball in L2(Rd;λ). Assume for now that τ0 is an unknown function and therefore an

infinite-dimensional parameter. In the models we will study below, τ0 itself will be a functional of

other parameters, both finite and infinite-dimensional. Working with τ0 =
√
p0 has the advantage

that τ0 ∈ L2(Rd;λ) while this may not be the case for p0 itself.

Denote the parameter of interest as ρ(τ0) ∈ R, where ρ is a pathwise differentiable functional

and let ∇ρ denote the pathwise derivative of ρ. Ultimately, our focus will be a finite-dimensional

parameter vector θ0, in which case ρ(τ0) = c′θ0, where c is an arbitrary vector3 . The objective

is to obtain efficiency bounds for regular estimators of ρ(τ0). Regular estimators are defined in

Newey (1990, page 102). In essence, they require that the asymptotic distribution of the estimator

be stable in a neighborhood of the true model (i.e, in a neighborhood of τ0).

The method described in ST for computing efficiency bounds is based on the intuition provided

by Stein (1956), who introduced the notion of efficiency bounds by noting that the problem of

estimating a real-valued parameter with nonparametric components is at least as difficult (to first

order of approximation) as any one-dimensional subproblem contained in it. Fix some t0 > 0 and

let t 7→ τt denote a curve from [0, t0] on to Γ that passes through τ0 at t = 0 (i.e, τt|t=0 = τ0). Let

τ̇ denote the slope of τt at t = 0. τ̇ is an element of the vector space L2(Rd;λ) which is tangent4

to Γ at τ0. Let T (Γ, τ0) denote the tangent cone that consists of all τ̇ ’s that are tangent to Γ at τ0.

Finally, let lin T(Γ, τ0) denote the smallest closed (in the L2(Rd;λ) norm) linear space containing

T (Γ, τ0).

Let `z(t) = log τ2
t (z). The score and the Fisher information for estimating t = 0 are given,

respectively by

S0(z) =
d`z(t)

dt

∣∣∣∣
t=0

=
2τ̇(z)

τ0(z)
and iF =

∫
R
d
S2

0(z)τ2
0 (z)dz = 4

∫
R
d
τ̇2(z)dz.

1As the discussion that follows will illustrate, bounded support or point-masses can be readily incorporated into
the analysis.

2While defining τ2
0 (z) = p0(z) yields two solutions: τ0(z) = ±

√
p0(z), we specifically define τ0(z) =

√
p0(z).

3This shows that focusing on the case where ρ(τ0) is a scalar can be done without loss of generality in the case
that will preoccupy us.

4Suppose M is a subset of a normed vector space (X, ‖ · ‖X). Take a point x0 ∈M . We say that a vector ẋ ∈ X
is tangent to M at x0 if there exists t0 > 0 and a mapping t 7→ rt into X satisfying ‖rt‖ = o(t) as t ↓ 0, such that
xt ≡ x0 + tẋ + rt ∈ M ∀ t ∈ [0, t0]. The curve t 7→ xt passes through x0 at t = 0 and ẋ is the slope of this curve at
t = 0.
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ST equip lin T(Γ, τ0) with the Fisher-information inner product 〈·, ·〉F defined as

〈τ̇1, τ̇2〉F = 4

∫
R
d
τ̇1(z)τ̇2(z)dz ∀ τ̇1, τ̇1 ∈ lin T(Γ, τ0).

We will use avar(Ân) to denote the asymptotic variance of Ân. Let t̂n be any regular,
√
n−consistent

estimator of t = 0 in the subproblem given by τt. The information inequality implies that

avar
{√

n · t̂n
}
≥ 1/iF = ‖τ̇‖−2

F . Next, since τt is ultimately a device to compute efficiency bounds,

we should focus on subproblems that are informative about our parameter of interest ρ(τ0). To

this end, normalize ρ and reparameterize τt so that ρ(τt) = t for t ∈ [0, t0]. Thus, estimating

t = 0 will be equivalent to estimating ρ(τ0). It follows that, for all the subproblems of interest,

avar
{√

n
[
ρ(τt̂n)− ρ(τ0)

]}
= avar

{√
n · t̂n

}
≥ ‖τ̇‖−2

F . Next, by definition, ∇ρ is a continuous

linear functional5 and, for the suproblems we are interested in, it satisfies ∇ρ(τ̇) = 1 (implying

that τ̇ 6= 0). Refer to such τ̇ ’s as feasible.

Thus, in searching for the lower bound (l.b.), we would look to maximize ‖τ̇‖−2
F over those τ̇ ’s

in lin T(Γ, τ0) that satisfy τ̇ 6= 0 and ∇ρ(τ̇) = 1. That is,

l.b. = sup
{
‖τ̇‖−2

F : τ̇ ∈ lin T(Γ, τ0), τ̇ 6= 0, ∇ρ(τ̇) = 1
}
.

Suppose ∇ρ(τ̇) is a nonzero constant (a property shared by all feasible τ̇ ’s). Then, τ̃ ≡ τ̇ /∇ρ(τ̇) ∈
lin T(Γ, τ0). In our search for l.b. we can focus on such τ̃ ’s. Since ∇ρ is a linear functional, we

have ∇ρ(τ̃) = 1 and therefore τ̃ is feasible. Furthermore, linearity of ∇ρ implies that

‖τ̃‖−1
F =

∥∥∥∥ τ̇

∇ρ(τ̇)

∥∥∥∥−1

F

=
|∇ρ(τ̇)|
‖τ̇‖F

=

∣∣∣∣∇ρ( τ̇

‖τ̇‖F

)∣∣∣∣
Obviously, we have

∥∥∥ τ̇
‖τ̇‖F

∥∥∥
F

= 1. Therefore, going back to the notation of τ̇ instead of τ̃ , the lower

bound l.b. can be re-expressed as

l.b. = sup
{
|∇ρ(τ̇)|2 : τ̇ ∈ lin T(Γ, τ0), τ̇ 6= 0, ‖τ̇‖F = 1

}
.

Since ∇ρ is a continuous linear functional on the tangent space lin T(Γ, τ0) equipped with ‖ · ‖F ,

its norm (see Luenberger (1969, Section 5.2)) is given by

‖∇ρ‖∗ = sup
{
|∇ρ(τ̇)| : τ̇ ∈ lin T(Γ, τ0), τ̇ 6= 0, ‖τ̇‖F = 1

}
.

Therefore, l.b. = ‖∇ρ‖2∗. The key insight in ST is that the problem of computing l.b can be

5Let M , ẋ and xt be as defined in footnote 4. A functional ρ : M → R is said to be pathwise differentiable at x0

if, for any xt, there exists a continuous linear functional ∇ : X → R such that
∣∣∣ ρ(xt)−ρ(x0)

t
−∇ρ(ẋ)

∣∣∣→ 0 as t ↓ 0.
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solved by invoking the Riesz-Fréchet Theorem (R-F Theorem henceforth) which states6 that, since(
lin T(Γ, τ0), 〈·, ·〉F

)
is a Hilbert space and ∇ρ is a continuous, linear functional defined in it, there

exists a unique τ∗ ∈ lin T(Γ, τ0) such that

∇ρ(τ̇) = 〈τ∗, τ̇〉F ∀ τ̇ ∈ lin T(Γ, τ0) and ‖∇ρ‖∗ = ‖τ∗‖F . (R-F)

τ∗ is called the representer of the linear functional ∇ρ. Thus, computing l.b. is done in two steps:

Step 1: Find the representer τ∗ by solving the condition (R-F).

Step 2: Compute l.b. = ‖τ∗‖2F

ST illustrate how this computational method can be used to recover the efficiency bound in a

number of well-known econometric models (partially linear model, models with unconditional and

conditional moment restrictions, the binary choice model and density-weighted average derivatives)

whose bounds were derived previously by a variety of ad-hoc approaches.

3 A linear econometric model with conditional expectations as

regressors

Consider the following model,

y = x′β0 + E[s|z]′γ0 + ε ≡ x′β0 + µ(z)′γ0 + ε, (1)

where x ∈ Rdx , s ∈ Rds and z ∈ Rdz . Denote ω ≡ (x′, s′, z′)′ ∈ Rdω and v ≡ (x′µ(z)′)′ ∈ Rd, where

d ≡ dx + ds. Model (1) can therefore be written as y = v′θ0 + ε. We observe (y, ω′)′ but not ε and

we treat µ(z) as a nonparametric regressor. The parameter vector of interest is θ0 ≡ (β′0, γ
′
0)′ ∈ Rd.

Our goal is to characterize the efficiency bound for
√
n-consistent, regular estimators of θ0 when

the regressor µ is nonparametrically specified and the distribution of ε|ω is unknown but assumed

to satisfy some qualitative conditions which we will describe below.

Example: A social-interactions model

The model described in (1) can encompass examples of social interaction models of the type studied,

for example, in Manski (1993), Manski (1995, Section 7.2) and Brock and Durlauf (2001, Section

2.6). Consider a population of agents whose choice of y is given by

y = x′β0 + δ′0Ê[u|z] + α0Ê[y|z] + ε, with α0 6= 1

6See Luenberger (1969, Section 5.3, Theorem 2) or Young (1988, Theorem 6.8).
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The operator Ê denotes agents’ subjective expectations. In the social-interactions literature, α0

measures an endogenous “social effect” while δ0 measures “contextual effects” and z describes

“reference” characteristics. Suppose beliefs are not observed in the data but we assume that

agents use rational expectations in their construction. This implies that subjective expectations are

consistent with the true data generating process. Assuming E[ε|z] = 0 and solving for E[y|z], we

have

y = x′β0 +
α0β

′
0E[x|z]

1− α0
+
δ′0E[u|z]
1− α0

+ ε ≡ x′β0 + E[s|z]′γ0 + ε,

where s ≡ (x′, u′)′ and γ0 = (α0β
′
0/(1− α0), δ′0/(1− α0))′.

4 Semiparametric efficiency bound

We describe our maintained assumptions next.

Assumption 1 The support of v is not contained in any proper linear subspace of Rd. Denote

Pr(ε ≤ ε|ω) = Pr(ε ≤ ε|ω) ≡ G0(ε|ω), with corresponding conditional density given by g2
0(ε|ω).

This is unknown but assumed to satisfy E[Υ(ε)|ω] = 0 for a known function Υ ∈ R`. Furthermore,

E[Υ(ε)Υ(ε)′|ω] is invertible w.p.1. Define

G =

{
g ∈ L2(R× Rd;λ× λω) : g2(ε|ω) > 0, g(ε|ω) is bounded, continuous and differentiable w.p.1,

g′(·|ω) ≡ dg(·|ω)

dε
: 0 <

∫
R

[
g(ε|ω) + εg′(ε|ω)

]2
dε <∞,

∫
R
g2(ε|ω)dε = 1,

∫
R

∥∥Υ(ε)
∥∥2
g2(ε|ω)dε <∞,

and

∫
R

Υ(ε)g2(ε|ω)dε = 0 w.p.1.

}
.

Then, g0 ∈ G. The characterization of G is meant to ensure that lim
|ε|→∞

g2
0(ε|ω) = 0 w.p.1, and, in

particular,
∫∞
−∞ g

′
0(ε|ω)g0(ε|ω)dε = 0 w.p.1.

Let h2
0(·|s, z) denote the conditional density of x given s, z. And let f2

0 (·|z) and m2
0(·) denote the

conditional density of s given z and the marginal density of z, respectively. Define

H =

{
h ∈ L2(Rdx × Rds+dz ;λ× λs,z) : h2(x|s, z) > 0,

∫
Rdx

h2(x|s, z)ds = 1 w.p.1.

}
;

F =

{
f ∈ L2(Rds × Rdz ;λ× λz) : f2(s|z) > 0,

∫
Rds

f2(s|z)ds = 1 w.p.1.

}
;

M =

{
m ∈ L2(Rdz ;λ) : m2(z) > 0,

∫
Rdz

m2(z)dz = 1

}
.

Then, f0 ∈ F , h0 ∈ H and m0 ∈M.
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The unknown parameters of the model are τ0 = (θ0, g0, f0,m0). The nonparametric regressors µ

are functionals of f0. The assumption that E[Υ(ε)|ω] = 0 for a known Υ allows us to incorporate

multiple cases of interest. For example,

• Mean-independence: E[ε|ω] = 0, by letting Υ(ε) = ε.

• Quantile-independence: Pr(ε ≤ 0|ω) = κ for a known κ, by letting Υ(ε) = 1{ε ≤ 0} − κ.

• Mean and quantile-independence, by letting Υ(ε) = (ε, 1{ε ≤ 0} − κ)′.

Assumption 1 focuses, for simplicity, on the case where all the components in ω (and in particular,

z) are continuously distributed. The steps in the proof of our main result will show how to extend

this to cases where these regressors have point masses.

Remark 1 Rilstone (1993) describes efficiency bounds in a linear model with nonparametric re-

gressors under the assumption that (a) these can be approximated arbitrarily well with a series

function, and (b) the additive shock ε is independent of all the other explanatory variables and is

Normally distributed with known variance. Our setting is much more general.

Using the same arguments as Lemmas B.1 and B.2 in ST, the tangent spaces for G, H, F and M
can be shown to be as follows,

lin T (G, g0) =

{
ġ ∈ L2(R×Rd;λ× λω):

∫
R

ġ(ε|ω)g0(ε|ω)dε = 0,

∫
R

Υ(ε)ġ(ε|ω)g0(ε|ω)dε = 0 w.p.1.

}
lin T (H, h0) =

{
ḣ ∈ L2(Rdx × Rds+dz ;λ× λs,z):

∫
R
dx

ḣ(x|s, z)h0(x|s, z)dx = 0 w.p.1.

}
lin T (F , f0) =

{
ḟ ∈ L2(Rds × Rdz ;λ× λz):

∫
R
ds

ḟ(s|z)f0(s|z)ds = 0 w.p.1.

}
lin T (M,m0) =

{
ṁ ∈ L2(Rdz ;λ):

∫
Rdz

ṁ(z)m0(z)dz = 0

}
.

(2)

Let τ̇ = (θ̇, ġ, ḣ, ḟ , ṁ). This vector belongs to the product tangent space

Ṫ = R
d × lin T (G, g0)× lin T (H, h0)× lin T (F , f0)× lin T (M,m0).

Proposition 1 Let

η(ω, ε) = 2
g′0(ε|ω)

g0(ε|ω)
, C(ω) = E

[
Υ(ε)Υ(ε)′|ω

]−1
E [Υ(ε)η(ω, ε)|ω] and PΥ(ω, ε) = C(ω)′Υ(ε).

PΥ(ω, ε) is the orthogonal projection, conditional on ω, of η(ω, ε) onto col(Υ(ε)) (the column space

of Υ(ε)). Let r(ω, ε) ≡ η(ω, ε)− PΥ(ω, ε) denote the residual of this projection. Let

M(z) =
(
Ids + E[η(ω, ε)2|z] · V ar[s|z]γ0γ

′
0

)−1
V ar[s|z]γ0γ

′
0,
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where Ids is the ds × ds identity matrix. Let

Φ∗(ω, ε) = −
(
v − E[v · PΥ(ω, ε)2|z] · tr(M(z))

1− E[r(ω, ε)2|z] · tr(M(z))

)
· PΥ(ω, ε) (3)

and Ω(z) = E [Φ∗(ω, ε)η(ω, ε)|z]. Let

Σ∗θ = E
[
Φ∗(ω, ε)Φ∗(ω, ε)′

]
+ E

[
Ω(z)γ′0V ar[s|z]γ0Ω(z)′

]
(4)

If Σ∗θ is invertible, the semiparametric efficiency bound for
√
n-consistent, regular estimators of θ0

in Model 1 under Assumption 1 is well-defined and is equal to Σ∗−1
θ .

Example: Normally distributed shocks with mean-independence

Suppose E[ε|ω] = 0 (i.e, Υ(ε) = ε). In this case, if ε|ω ∼ N (0, σ2(ω)) we have η(ω, ε) = − ε
σ2(ω)

and therefore PΥ(ω, ε) = − ε
σ2(ω)

and r(ω, ε) = 0. Finally, Φ∗ and Ω in (3) become

Φ∗(ω, ε) =

(
v − E

[
v

σ2(ω)

∣∣∣z] · tr(M(z))

)
· ε

σ2(ω)
,

Ω(z) = E

[
v

σ2(ω)

∣∣∣∣z] · (tr(M(z)) · E
[

1

σ2(ω)

∣∣∣∣Z]− 1

)
,

with M(z) =
(
Ids + E

[
1

σ2(ω)

∣∣∣z] · V ar[s|z]γ0γ
′
0

)−1
V ar[s|z]γ0γ

′
0.

Proof of Proposition 1

We have

S0 =
d

dt

[
log p2

t (y|ω) + log h2
t (x|s, z) + log f2

t (s|z) + logm2
t (z)

] ∣∣∣∣
t=0

= 2

[
ġ(ε|ω)− g′0(ε|ω) · (v′θ̇ + γ′0µ̇(z))

g0(ε|ω)

]
+ 2

ḣ(x|s, z)
h0(x|s, z)

+ 2
ḟ(s|z)
f0(s|z)

+ 2
ṁ(z)

m0(z)
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with µ̇(z) = 2
∫
sḟ(s|z)f0(s|z)ds. Since lim

|ε|→∞
g2

0(ε|ω) = 0 and
∫
ġ(ε|ω)g0(ε|ω)dε = 0 w.p.1, using

iterated expectations we have

E[S2
0 ] = 4E

( ġ(ε|ω)− g′0(ε|ω) · (v′θ̇ + γ′0µ̇(z))

g0(ε|ω)

)2
+ 4E

( ḣ(x|s, z)
h0(x|s, z)

)2
+ 4E

( ḟ(s|z)
f0(s|z)

)2


+ 4

∫
ṁ(z)2dz, and therefore,

〈
τ̇1, τ̇2

〉
F

= 4E

[(
ġ1(ε|ω)− g′0(ε|ω) · (v′θ̇1 + γ′0µ̇1(z))

g0(ε|ω)

)(
ġ2(ε|ω)− g′0(ε|ω) · (v′θ̇2 + γ′0µ̇2(z))

g0(ε|ω)

)]

+ 4E

[(
ḣ1(x|s, z)
h0(x|s, z)

)(
ḣ2(x|s, z)
h0(x|s, z)

)]
+ 4E

[(
ḟ1(s|z)
f0(s|z)

)(
ḟ2(s|z)
f0(s|z)

)]
+ 4

∫
ṁ1(z)ṁ2(z)dz

We are interested in the efficiency bound for ρ(τ) = c′θ0 for an arbitrary c. The R-F condition

becomes

c′θ̇ = 4E

[(
g∗(ε|ω)− g′0(ε|ω) · (v′θ∗ + γ′0µ

∗(z))

g0(ε|ω)

)(
ġ(ε|ω)− g′0(ε|ω) · (v′θ̇ + γ′0µ̇(z))

g0(ε|ω)

)]

+ 4E

[(
h∗(x|s, z)
h0(x|s, z)

)(
ḣ(x|s, z)
h0(x|s, z)

)]
+ 4E

[(
f∗(s|z)
f0(s|z)

)(
ḟ(s|z)
f0(s|z)

)]
+ 4

∫
m∗(z)ṁ(z)dz

∀ τ̇ ∈ Ṫ ,

where µ∗(z)︸ ︷︷ ︸
ds×1

= 2
∫
sf∗(s|z)f0(s|z)ds. Firstly, we will set m∗ = 0 and h∗ = 0, as these two rep-

resenters will prove to be ancillary to our problem. Secondly, it will be convenient to express

f∗(s|z) = θ∗′ t∗(s|z)︸ ︷︷ ︸
d×1

and g∗(ε|ω) = θ∗′ λ∗(ε|ω)︸ ︷︷ ︸
d×1

, where t∗ ∈ lin T (F .f0) and λ∗ ∈ lin T (G, g0)

element-wise. From here, we have µ∗(z) = δ∗(z)θ∗, where δ∗(z)︸ ︷︷ ︸
ds×d

≡ 2
∫
st∗(s|z)′f0(s|z)ds. Next,

let Φ∗(ω, ε)︸ ︷︷ ︸
d×1

≡ 2
(
λ∗(ε|ω)−g′0(ε|ω)·(v+δ∗(z)′γ0)

g0(ε|ω)

)
and Ω(z) = E [Φ∗(ω, ε) · η(ω, ε)|z]. The R-F condition

becomes

c′θ̇ = 2θ∗′E

[∫ {
2t∗(s|z)− Ω(z)γ′0sf0(s|z)

}
ḟ(s|z)ds

]
︸ ︷︷ ︸

(5A)

+ 2θ∗′E

[
Φ∗(ω, ε)

g0(ε|ω)
· ġ(ε|ω)

]
︸ ︷︷ ︸

(5B)

−θ∗′E
[
Φ∗(ω, ε)η(ω, ε)v′

]
θ̇︸ ︷︷ ︸

(5C)

∀ τ̇ ∈ Ṫ

(5)
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To solve (5), we will first find the representers t∗ and λ∗ that make both (5A) and (5B) equal to

zero. We will choose

t∗(s|z) =
1

2
Ω(z)γ′0(s− E[s|z])f0(s|z). (6)

Since
∫
f0(s|z)ḟ(s|z)ds = 0 w.p.1, it is straightforward to verify that this choice for the representer

t∗ makes (5A) equal to zero. Furthermore,
∫
t∗(s|z)f0(s|z) = 1

2Ω(z)γ′0
∫

(s − E[s|z])f2
0 (s|z)ds = 0

w.p.1, and therefore t∗ ∈ lin T (F , f0) element-wise (see (2)). From here,

δ∗(z) = V ar[s|z]γ0Ω(z)′

= V ar[s|z]γ0 ·

(
2E

[
λ∗(ε|ω)′ · η(ω, ε)

g0(ε|ω)

∣∣∣∣∣z
]
− E

[
v′ · η(ω, ε)2|z

])
− V ar[s|z]γ0γ

′
0 · E

[
η(ω, ε)2|z

]
δ∗(z).

Therefore,

δ∗(z) = A(z) ·

(
2E

[
λ∗(ε|ω)′ · η(ω, ε)

g0(ε|ω)

∣∣∣∣∣z
]
− E

[
v′ · η(ω, ε)2|z

])
, (7)

where A(z)︸︷︷︸
ds×1

≡
(
Ids + V ar[s|z]γ0γ

′
0 · E

[
η(ω, ε)2|z

])−1
· V ar[s|z]γ0. Next, we will characterize the

representer λ∗ that makes (5B) equal to zero. Consider

λ∗(ε|ω) =
1

2

(
v + δ∗(z)′γ0

)
· r(ω, ε) · g0(ε|ω), (8)

where r(ω, ε) is as described in the statement of Proposition 1. With this choice, we have

E

[
Φ∗(ω, ε)

g0(ε|ω)
· ġ(ε|ω)

]
= E

[(
λ∗(ε|ω)− g′0(ε|ω)

(
v + δ∗(z)′γ0

)
g2

0(ε|ω)

)
· ġ(ε|ω)

]

= −1

2
E

[
C(ω)′Υ(ε)

g0(ε|ω)
· ġ(ε|ω)

]
= −1

2
E

[
C(ω)′

∫
Υ(ε)g0(ε|ω)ġ(ε|ω)dε

]
= 0,

where the last equality follows because ġ ∈ lin T (G, g0) (see (2)). Therefore, the choice for λ∗

in (8) makes (5B) equal to zero. But we need to verify that λ∗ ∈ lin T (G, g0) element-wise.

λ∗(ε|ω) consists of d components: λ∗` (ε|ω) for ` = 1, . . . , d. From (8), each can be written as

λ∗` (ε|ω) = ξ`(ω) · r(ω, ε) · g0(ε|ω). We need to show that each λ∗` ∈ lin T (G, g0). That is: (a)∫
λ∗` (ε|ω)g0(ε|ω)dε = 0 and (b)

∫
Υ(ε)λ∗` (ε|ω)g0(ε|ω)dε = 0 w.p.1. We have∫

λ∗` (ε|ω)g0(ε|ω)dε = ξ`(ω)

∫
r(ω, ε) · g0(ε|ω) · g0(ε|ω)dε

= ξ`(ω)

∫ (
g′0(ε|ω)− C(ω)′Υ(ε) · g0(ε|ω)

)
· g0(ε|ω)dε

= ξ`(ω)

∫
g′0(ε|ω)g0(ε|ω)dε− ξ`(ω)C(ω)′E [Υ(ε)|ω] = 0 w.p.1,

9



since
∫
g′0(ε|ω)g0(ε|ω)dε = 0 and E [Υ(ε)|ω] = 0 w.p.1. Next, note that

∫
Υ(ε)λ∗` (ε|ω)g0(ε|ω)dε =

ξ`(ω)
∫

Υ(ε) · r(ω, ε) · g2
0(ε|ω)dε = ξ`(ω) · E [Υ(ε)r(ω, ε)|ω] = 0 w.p.1 since, conditional on ω,

Υ(ε)⊥r(ω, ε) w.p.1. Therefore, λ∗ ∈ lin T (G, g0) element-wise. Thus, with the representers in (6)

and (8), the R-F condition in (5) becomes

c′θ̇ = θ∗′
{
E
[
Φ∗(ω, ε)Φ∗(ω, ε)′

]
+ E

[
Ω(z)γ′0V ar[s|z]γ0Ω(z)′

]}︸ ︷︷ ︸
≡Σ∗θ

θ̇

From here, the R-F condition is satisfied by choosing θ∗ = Σ∗θ
−1c and by the R-F Theorem, the

efficiency bound is l.b = 〈τ∗, τ∗〉F = θ∗′
{
E [Φ∗(ω, ε)Φ∗(ω, ε)′] + E [Ω(z)γ′0V ar[s|z]γ0Ω(z)′]

}
θ∗ =

c′Σ∗θ
−1Σ∗θΣ

∗
θ
−1c = c′Σ∗θ

−1c. The final step is to simplify Φ∗. Combining (7) and (8) and simplifying,

we obtain a closed-form expression: δ∗(z) = − A(z)·E[v′PΥ(ω,ε)2|z]
1−A(z)′γ0E[r(ω,ε)2|z] , and

Φ∗(ω, ε) = −

(
v −

E
[
v · PΥ(ω, ε)2|z

]
A(z)′γ0

1− E [r(ω, ε)2|z]A(z)′γ0

)
· PΥ(ω, ε).

Finally, since A(z)′γ0 is a scalar, using the properties of traces, A(z)′γ0 = tr (A(z)′γ0) = tr (A(z)γ′0).

Therefore,

A(z)′γ0 = tr
((
Ids + V ar[s|z]γ0γ

′
0 · E

[
η(ω, ε)2|z

])−1
V ar[s|z]γ0︸ ︷︷ ︸

=A(z)

γ′0

)
≡ tr(M(z)),

where M(z) ≡
(
Ids + E[η(ω, ε)2|z] · V ar[s|z]γ0γ

′
0

)−1
V ar[s|z]γ0γ

′
0. This concludes the proof of the

proposition. �

Extensions and directions for future work

There are multiple avenues to extend model (1). A particularly interesting one would be to allow

the conditioning variable z in µ(z) ≡ E[s|z] to be a nonparametric regressor itself. The approach

of representers in the tangent space employed here also has the potential to be used to compute

efficiency bounds in this case, and the steps of our proof can provide a guidance. While in the

case examined here we have µ̇(z) = 2
∫
sḟ(s|z)f0(s|z)ds, if z itself is a nonparametric regressor we

would have µ̇(z) = 2
∫
s
[
ḟ(s|z) +∇zf0(s|z)′ż

]
f0(s|z)ds. The tangent space for ż would depend

on the specific structure of z. For example, if z = E[u1|u2] =
∫
u1ν

2
0(u1|u2)du1, we would have

ż = 2
∫
u1ν̇(u1|u2)ν0(u1|u2)du1, and ν̇ would belong to a tangent space with the same type of

properties described in our analysis (see equation (2)).

The model studied in Li and Wooldridge (2002) fits the general description of the extension

outlined above. They focus on partially linear models of the type studied in Robinson (1988),
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described as y = x′β0 + m(η) + ε (with m(·) an unknown function) in cases where η is of the

form η = s − E[s|z]. Assuming that E[ε|x, z] = 0, identification comes from the transformation

y − E[y|η] = (x − E[x|η])′β0 + ε. Assuming that (y, x, s, z) are observable, the tangent-space

representer approach used here has the potential to derive the efficiency bound for
√
n−consistent,

regular estimators of β0 in this type of model. Even though it is not a special case of our analysis,

the steps of our proof can provide a roadmap to derive the bounds once the tangent spaces are

modified appropriately as we outlined above. We leave the details for future research.
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