The Operational Amplifier in the circuit below can be considered ideal with the exception of a finite unity-gain bandwidth (B) of 3 MHz.

a) Calculate the closed-loop gain (A_{CL})

b) Calculate the closed-loop bandwidth (B_{CL})

![Circuit Diagram 1](image1)

PROBLEM

The Operational Amplifier in the circuit of the figure below can be considered ideal with the exception of a finite unity-gain bandwidth of 1 MHz. Calculate its closed-loop bandwidth (B_{CL})

![Circuit Diagram 2](image2)
PROBLEM

The Operational Amplifier in the circuit of the figure below can be considered ideal with the exception of a finite unity-gain bandwidth of 1 MHz. Calculate its closed-loop bandwidth (B_{CL}) assuming that $R_1 = R_2$. (Hint.- This circuit needs to be treated as two different circuits, depending on the position of the switch).

![Operational Amplifier Circuit](image1)

PROBLEM

The Operational Amplifier in the circuit of the figure below can be considered ideal with the exception of a finite unity-gain bandwidth of 1 MHz. Calculate its closed-loop bandwidth (B_{CL}).

![Operational Amplifier Circuit](image2)