26. For any finite cyclic group C there exists a compact connected three-dimensional manifold whose fundamental group is isomorphic to C.

\textit{Hint:} Use the Hopf fibration.

27. For any abelian finitely generated group A there exists a compact manifold whose fundamental group is isomorphic to A.

\textit{Hint:} Use the fact that any finitely generated abelian group is the direct product of cyclic groups (finite and infinite).

28. Prove that complex projective space $\mathbb{C}P(n)$ is simply connected for every n.

29. Introduce a metric d on the Cantor set C (generating the Cantor set topology) such that (C, d) cannot be isometrically embedded to \mathbb{R}^n for any n.

30. Construct a smooth atlas of the projective space $\mathbb{R}P(3)$ with as few charts as possible.

\textbf{"Extra credit" problems}

You may submit solutions until November 14.

\textbf{E6.} Introduce a metric d on the Cantor set C such that (C, d) is not Lipschitz equivalent to a subset of \mathbb{R}^n for any n.

\textbf{E7.} Prove that for any finite graph G, $\pi_n(G) = 0$ for any $n \geq 2$.