CONTROL PROBLEM: You should do this problem independently without consulting other students.

36. Consider a Riemannian metric in local coordinates
\[ds^2 = a(x, y)dx^2 + 2b(x, y)dxdy + c(x, y)dy^2. \]
Interpret the following conditions in terms of the coefficients of the metric:

1. The coordinate curves \(x = \text{const} \) and \(y = \text{const} \) are orthogonal;
2. The coordinate curves \(x = \text{const} \) and \(y = \text{const} \) form the angle \(\pi/4 \) at each point;
3. The area determined by the metric coincides with the usual area \(dxdy \).

REGULAR PROBLEMS:

NOTICE: Problem N37 has been replaced.

37. Prove the following formula for the hyperbolic distance between two points \(z_1 \) and \(z_2 \) in the upper half-plane
\[d(z_1, z_2) = \ln \left(\frac{|z_1 - \bar{z}_2| + |z_1 - z_2|}{|z_1 - \bar{z}_2| - |z_1 - z_2|} \right). \]

38. Given a smooth function \(F \) on a surface \(S \) with Riemannian metric one defines (Riemannian) gradient \(\nabla F \) of \(F \) as follows:
At any non-critical point \(x \) there is unique direction of fastest increase of \(F \) i.e a tangent vector \(v \in T_x S \) such that the derivative \(D_v F \) of \(F \) along \(v \), i.e. along any parametrized curve tangent to \(v \), is maximal among all derivatives along tangent vectors of unit length.
(i) Prove this.
Then
\[\nabla F(x) = \begin{cases}
D_vF \cdot v, & \text{if } x \text{ is non-critical} \\
0, & \text{if } x \text{ is critical.}
\end{cases} \]

(ii) Prove that \(\nabla F \) is a smooth vector field orthogonal to the level curves of the function \(F \) at all non-critical points.

Hint: Use local coordinates.