Lectures 1 and 2 (180 min)

1. Introduction
 - Cohomological equations, origins, toral example. Gottschalk-Hedlund’s theorem
 - Stability, rigidity, the Greenfield-Wallach-Katok conjecture.
 - Invariant distributions as obstructions. Interpretation of the diophantine condition in the toral example as existence of a bounded inverse $X^{(1)} - 1$ for Sobolev functions.

2. Elements of the representation theory of $\text{PSL}(2, \mathbb{R})$
 - $\text{PSL}(2, \mathbb{R})$ group of isometries of the Poincaré plane.
 - Models of unitary irreducible representations of $\text{PSL}(2, \mathbb{R})$
 - We admit that these models exhaust the unitary dual of $\text{PSL}(2, \mathbb{R})$
 - C^∞ vectors and Harish-Chandra modules (infinitesimal point of view)
 - Splitting of $L^2(G/\Gamma)$ into unitary irreducible representations
 - Geometric interpretation of the decomposition of $L^2(G/\Gamma)$ into irreducible modules and spectral gap
 - Sobolev vectors in $L^2(G/\Gamma)$

Lecture 3 (90 min)

3. Invariant Distributions and cohomological equation for horocycle flow.
 - Sobolev estimate of solutions.

4. Renormalization and ergodic averages.
 - Gottschalk-Hedlund revisited: estimate for the component orthogonal to the invariant distributions for a segment of horocycle orbit
 - Action of the geodesic flow on the space of invariant distributions for horocycle flow
 - Renormalization for compact surfaces.

Lecture 4 (90 min)

5. Elements of Kirillov theory,
 - Nilpotent groups
 - Coadjoint orbits, polarizing subalgebras,
 - Unitary dual of nilpotent groups: Kirillov’s classification.
 - Example: Heisenberg group
 - C^∞ vectors and Sobolev vectors for irreducible representations of nilpotent groups.
Lecture 5 and 6 (180 min)

6. Cohomological equation cohomological for nilpotent groups
 - Sobolev estimate of solutions.

7. Renormalization and ergodic averages for Heisenberg’s group.
 - Automorphisms of Heisenberg’s group and moduli of lattices
 - Bundle of invariant distributions over moduli space
 - The Renormalization dynamics.

Prerequisites

Basic definitions on Lie algebra and Lie Groups (any book on the subject, for exemple Helgason);
Spectral theory of unbounded self-adjoint operators (Reed-Simon: (Functional analysis) or Riesz-
Nagy(Functional analysis)) Distributions (Reed-Simon: (Functional analysis) suffices, but see also
Hörmander (Linear differential operators)). Elliptic regularity and Sobolev spaces (There are
many books on the subject: Warner (Foundation of differential geometry) has a nice chapter
on it; standard references are Gilbarg-Trudinger (Elliptic...) and, of course, Hörmander (Linear
differential operators)).

Tentative division of lectures:

- Lectures 1-3: L. Flaminio
- Lectures 4-6: G. Forni