17. Consider a measurable set \(A \subset [0,1] \) of positive Lebesgue measure. Let \(\lambda_A \) be the normalized restriction of Lebesgue measure to \(A \): for a measurable \(B \subset A \), \(\lambda_A(B) = \frac{\lambda(B)}{\lambda(A)} \). Prove that \((A, \lambda_A) \) is a Lebesgue space.

Hint: One of possible approaches is to represent \(A \) as an \(F_\sigma \) set \(\mod 0 \).

18. Consider a \(\sigma \)-algebra of subsets of \(X \) with non-atomic finite measure \(\mu \). Show that for every \(t, 0 < t < \mu(X) \) there exist uncountably many measurable sets of measure \(t \) pairwise different \(\mod 0 \), i.e. for any two sets \(A, B \) from the collection \(\mu(A \Delta B) > 0 \).

Hint: First construct one such set.

19. Let for \(0 < p < 1 \), \(\beta_p \) be the measure on \(\{0,1\} \) such that \(\beta_p(\{0\}) = p \) and \(\beta_p(\{0\}) = 1 - p \). Consider the countable product of measures \(\mu_{p_n} \) on the space \(\Omega_2 \). Find a necessary and sufficient condition on the sequence \(p_n \) for the space \(\Omega_2 \) with this measure to be a Lebesgue space.

20. Consider a measurable function \(f : [0,1] \to \mathbb{R} \) and let \(\mathcal{B} \) be the \(\sigma \)-algebra of the sets of the form \(f^{-1}(A) \) where \(A \) is a Lebesgue measurable set on the line. Find necessary and sufficient condition for this algebra to be isomorphic \(\mod 0 \) to Lebesgue \(\sigma \)-algebra.

An extra credit problem

4E. Consider a Borel non-atomic measure \(\mu \) on the open unit square \(I^2 \) such that any open set has positive measure. Prove that there exists a homeomorphism \(I^2 \to I^2 \) such that for any Borel set \(A \), \(\mu(A) = \lambda(h(A)) \), where \(\lambda \) is Lebesgue measure.

Hint: Try to use an inductive procedure to adjust the measure on finer and finer grids.