The Boundary value problems for second order elliptic operators satisfying Carleson condition

Martin Dindoš

Michael Taylor’s conference, Chapel Hill, July 17, 2012
Table of contents

Formulation of boundary value problems
- Nontangential maximal function
- L^p Dirichlet problem
- L^p Neumann problem
- Regularity problem

Overview of known results
- Negative result
- Carleson condition
- Results for Dirichlet problem $(D)_p$
- Results for Neumann and Regularity problems in 2D

Results for Neumann and Regularity problems in any dimension
- Small Carleson norm

Proof - main ideas
- Regularity problem
- Neumann problem

Open problems
Dirichlet, Neumann and Regularity boundary value problems

Let $L = \text{div} \ A \nabla u$ be a second order elliptic operator with bounded measurable coefficients $A = (a_{ij})$ on a Lipschitz domain Ω. That is there is $\Lambda > 0$ such that

$$\Lambda^{-1} |\xi|^2 \leq \sum_{i,j} a_{ij}(x) \xi_i \xi_j \leq \Lambda |\xi|^2.$$

(Matrix A does not have to be symmetric).
Dirichlet, Neumann and Regularity boundary value problems

Let \(L = \text{div} \ A \nabla u \) be a second order elliptic operator with bounded measurable coefficients \(A = (a_{ij}) \) on a Lipschitz domain \(\Omega \). That is there is \(\Lambda > 0 \) such that

\[
\Lambda^{-1} |\xi|^2 \leq \sum_{i,j} a_{ij}(x) \xi_i \xi_j \leq \Lambda |\xi|^2.
\]

(Matrix \(A \) does not have to be symmetric).
Let $\Gamma(.)$ be a collection of nontangential cones with vertices a boundary points $Q \in \partial \Omega$. We define the non-tangential maximal function at Q relative to Γ by

$$N(u)(Q) = \sup_{X \in \Gamma(Q)} |u(X)|.$$

We also consider a weaker version of this object

$$\tilde{N}(u)(Q) = \sup_{X \in \Gamma(Q)} \left(\delta(X)^{-n} \int_{B_{\delta(X)/2}(X)} |u(Y)|^2 \, dY \right)^{\frac{1}{2}}.$$
Let $\Gamma(.)$ be a collection of nontangential cones with vertices a boundary points $Q \in \partial \Omega$. We define the non-tangential maximal function at Q relative to Γ by

$$N(u)(Q) = \sup_{X \in \Gamma(Q)} |u(X)|.$$

We also consider a weaker version of this object

$$\tilde{N}(u)(Q) = \sup_{X \in \Gamma(Q)} \left(\delta(X)^{-n} \int_{B_{\delta(X)/2}(X)} |u(Y)|^2 \, dY \right)^{1/2}.$$
Definition
Let $1 < p \leq \infty$. The Dirichlet problem with data in $L^p(\partial \Omega, d\sigma)$ is solvable (abbreviated $(D)_p$) if for every $f \in C(\partial \Omega)$ the weak solution u to the problem $Lu = 0$ with continuous boundary data f satisfies the estimate

$$\|N(u)\|_{L^p(\partial \Omega, d\sigma)} \lesssim \|f\|_{L^p(\partial \Omega, d\sigma)}.$$

The implied constant depends only the operator L, p, and the Lipschitz constant of the domain.
The Boundary value problems for second order elliptic operators satisfying Carleson condition

Formulation of boundary value problems

L^p Neumann problem

Definition

Let $1 < p < \infty$. The Neumann problem with boundary data in $L^p(\partial\Omega)$ is solvable (abbreviated $(N)_p$), if for every $f \in L^p(\partial\Omega) \cap C(\partial\Omega)$ such that $\int_{\partial\Omega} f d\sigma = 0$ the weak solution u to the problem

$$\begin{cases}
Lu = 0 & \text{in } \Omega \\
A\nabla u \cdot \nu = f & \text{on } \partial\Omega
\end{cases}$$

satisfies

$$\|\tilde{N}(\nabla u)\|_{L^p(\partial\Omega)} \lesssim \|f\|_{L^p(\partial\Omega)}.$$

Again, the implied constant depends only the operator L, p, and the Lipschitz constant of the domain. Here ν is the outer normal to the boundary $\partial\Omega$.

\tilde{N} is the Neumann operator defined by $\tilde{N}(v) = \int_{\partial\Omega} A\nabla v \cdot \nu d\sigma.$
Regularity problem

Definition
Let $1 < p < \infty$. The regularity problem with boundary data in $H^{1,p}(\partial \Omega)$ is solvable (abbreviated $(R)_p$), if for every $f \in H^{1,p}(\partial \Omega) \cap C(\partial \Omega)$ the weak solution u to the problem

$$\begin{cases}
Lu = 0 & \text{in } \Omega \\
u|_{\partial B} = f & \text{on } \partial \Omega
\end{cases}$$

satisfies

$$\|\tilde{N}(\nabla u)\|_{L^p(\partial \Omega)} \lesssim \|\nabla T f\|_{L^p(\partial \Omega)}.$$

Again, the implied constant depends only the operator L, p, and the Lipschitz constant of the domain.
Negative result

Theorem

There exists a bounded measurable matrix A on a unit disk D satisfying the ellipticity condition such that the Dirichlet problem $(D)_p$, the Regularity problem $(R)_p$ and the Neumann problem $(N)_p$ are not solvable for any $p \in (1, \infty)$.

Hence solvability requires extra assumption on the regularity of coefficients of the matrix A.
The Boundary value problems for second order elliptic operators satisfying Carleson condition

Overview of known results

Negative result

Theorem

There exists a bounded measurable matrix A on a unit disk D satisfying the ellipticity condition such that the Dirichlet problem $(D)_p$, the Regularity problem $(R)_p$ and the Neumann problem $(N)_p$ are not solvable for any $p \in (1, \infty)$. Hence solvability requires extra assumption on the regularity of coefficients of the matrix A.
The Carleson condition - motivation

Consider the boundary value problems associated with a smooth elliptic operator in the region above a graph $t = \varphi(x)$, for φ Lipschitz.

Consider a mapping $\Phi : \mathbb{R}_+^n \to \{X = (x, t); t > \varphi(x)\}$ defined by

$$\Phi(X) = (x, c_0 t + (\theta_t * \varphi)(x))$$

where $(\theta_t)_{t>0}$ is smooth compactly supported approximate identity and c_0 is large enough so that Φ is one to one.
The Carleson condition - motivation

Consider the boundary value problems associated with a smooth elliptic operator in the region above a graph \(t = \varphi(x) \), for \(\varphi \) Lipschitz.

Consider a mapping \(\Phi : \mathbb{R}^n_+ \to \{ X = (x, t); t > \varphi(x) \} \) defined by

\[
\Phi(X) = (x, c_0 t + (\theta_t * \varphi)(x))
\]

where \((\theta_t)_{t>0}\) is smooth compactly supported approximate identity and \(c_0\) is large enough so that \(\Phi\) is one to one.

Then the function \(v = u \circ \Phi \) solves an elliptic equation in \(\mathbb{R}^n_+ \) with coefficients satisfying
The Carleson condition - motivation

Consider the boundary value problems associated with a smooth elliptic operator in the region above a graph \(t = \varphi(x) \), for \(\varphi \) Lipschitz.

Consider a mapping \(\Phi : \mathbb{R}_+^n \rightarrow \{X = (x, t); \ t > \varphi(x)\} \) defined by

\[
\Phi(X) = (x, c_0 t + (\theta_t * \varphi)(x))
\]

where \((\theta_t)_{t>0}\) is smooth compactly supported approximate identity and \(c_0\) is large enough so that \(\Phi\) is one to one.

Then the function \(v = u \circ \Phi\) solves an elliptic equation in \(\mathbb{R}_+^n\) with coefficients satisfying
The Carleson condition - motivation

$$\delta(X)^{-1} \left(\text{osc}_{B(x, \delta(x)/2)} a_{ij} \right)^2$$

is the density of a Carleson measure on Ω.

Definition

A measure μ in Ω is Carleson if there exists a constant $C = C(r_0)$ such that for all $r \leq r_0$ and $Q \in \partial \Omega$,

$$\mu(B(Q, r) \cap \Omega) \leq C \sigma(B(Q, r) \cap \partial \Omega).$$

The best possible C is the Carleson norm. When μ is Carleson we write $\mu \in \mathcal{C}$.
The Carleson condition - motivation

\(\delta(X)^{-1} \left(\text{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2 \)

is the density of a Carleson measure on \(\Omega \).

Definition

A measure \(\mu \) in \(\Omega \) is Carleson if there exists a constant \(C = C(r_0) \) such that for all \(r \leq r_0 \) and \(Q \in \partial \Omega \),

\[
\mu(B(Q, r) \cap \Omega) \leq C \sigma(B(Q, r) \cap \partial \Omega).
\]

The best possible \(C \) is the Carleson norm. When \(\mu \) is Carleson we write \(\mu \in \mathcal{C} \).

If \(\lim_{r_0 \to 0} C(r_0) = 0 \), then we say that the measure \(\mu \) satisfies the vanishing Carleson condition, and we write \(\mu \in \mathcal{C}_V \).
The Carleson condition - motivation

\[\delta(X)^{-1} \left(\text{osc}_{B(X,2\delta(X)/2)} a_{ij} \right)^2 \]

is the density of a Carleson measure on \(\Omega \).

Definition

A measure \(\mu \) in \(\Omega \) is Carleson if there exists a constant \(C = C(r_0) \) such that for all \(r \leq r_0 \) and \(Q \in \partial \Omega \),

\[\mu(B(Q, r) \cap \Omega) \leq C \sigma(B(Q, r) \cap \partial \Omega). \]

The best possible \(C \) is the Carleson norm. When \(\mu \) is Carleson we write \(\mu \in C \).

If \(\lim_{r_0 \to 0} C(r_0) = 0 \), then we say that the measure \(\mu \) satisfies the vanishing Carleson condition, and we write \(\mu \in C_V \).
Results for Dirichlet problem \((D)_p\)

Kenig-Pipher, 2001 If

$$\delta(X)^{-1} \left(\text{osc}_{B(X, \delta(X)/2)} a_{ij} \right)^2$$

is a density of Carleson measure on a Lipschitz domain \(\Omega\) then \((D)_p\) is solvable for some (large) \(p < \infty\).

M.D-Pipher-Petermichl, 2007 For any \(p \in (1, \infty)\) there exists \(C = C(p) > 0\) such that if the Carleson norm bounded is less than \(C(p)\) and the Lipschitz constant \(L\) of the domain \(\Omega\) is smaller than \(C(p)\) then \((D)_p\) is solvable.
Overview of known results

Results for Dirichlet problem \((D)_p\)

Kenig-Pipher, 2001 If

\[
\delta(X)^{-1} \left(\text{osc}_{B(x,\delta(x)/2)} a_{ij} \right)^2
\]

is a density of Carleson measure on a Lipschitz domain \(\Omega\) then \((D)_p\) is solvable for some (large) \(p < \infty\).

M.D-Pipher-Petermichl, 2007 For any \(p \in (1, \infty)\) there exists \(C = C(p) > 0\) such that if the Carleson norm bounded is less than \(C(p)\) and the Lipschitz constant \(L\) of the domain \(\Omega\) is smaller than \(C(p)\) then \((D)_p\) is solvable.
Results for Neumann and Regularity problems in 2D

M.D.-Rule, 2010 Let $\Omega \subset \mathbb{R}^2$.
Results for Neumann and Regularity problems in 2D

M.D-Rule, 2010 Let $\Omega \subset \mathbb{R}^2$. For any $p \in (1, \infty)$ there exists $C = C(p) > 0$ such that if the coefficients of A satisfy a variant of our Carleson condition with norm less than $C(p)$ and the Lipschitz constant L of the domain Ω is smaller than $C(p)$ then $(R)_p$ and $(N)_p$ are solvable.
M.D.-Rule, 2010 Let $\Omega \subset \mathbb{R}^2$.
For any $p \in (1, \infty)$ there exists $C = C(p) > 0$ such that if the coefficients of A satisfy a variant of our Carleson condition with norm less than $C(p)$ and the Lipschitz constant L of the domain Ω is smaller than $C(p)$ then $(R)_p$ and $(N)_p$ are solvable.
Main theorem-Regularity

Let $1 < p < \infty$ and let Ω be a Lipschitz domain with Lipschitz norm L. Let

$$\delta(X)^{-1} \left(\text{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2$$

be the density of a Carleson measure on all Carleson boxes of size at most r_0 with norm $C(r_0)$. Then there exists $\varepsilon = \varepsilon(\Lambda, n, p) > 0$ such that if $\max\{L, C(r_0)\} < \varepsilon$ then the $(R)_p$ regularity problem

$$
\begin{cases}
Lu = 0 & \text{in } \Omega \\
u|_{\partial\Omega} = f & \text{on } \partial\Omega \\
\tilde{N}(\nabla u) \in L^p(\partial\Omega)
\end{cases}
$$

is solvable for all f with $\|\nabla^T f\|_{L^p(\partial\Omega)} < \infty$.
Main theorem-Regularity

Let $1 < p < \infty$ and let Ω be a Lipschitz domain with Lipschitz norm L. Let

$$\delta(X)^{-1} \left(\text{osc}_{B(X, \delta(X)/2)} a_{ij} \right)^2$$

be the density of a Carleson measure on all Carleson boxes of size at most r_0 with norm $C(r_0)$. Then there exists $\varepsilon = \varepsilon(\Lambda, n, p) > 0$ such that if $\max\{L, C(r_0)\} < \varepsilon$ then the $(R)_p$ regularity problem

$$\begin{cases}
Lu = 0 & \text{in } \Omega \\
u|_{\partial\Omega} = f & \text{on } \partial\Omega \\
N(\nabla u) \in L^p(\partial\Omega)
\end{cases}$$

is solvable for all f with $\|\nabla T f\|_{L^p(\partial\Omega)} < \infty$. Moreover, there exists a constant $C = C(\Lambda, n, a, p) > 0$ such that

$$\|\nN(\nabla u)\|_{L^p(\partial\Omega)} \leq C \|\nabla T f\|_{L^p(\partial\Omega)}.$$
Main theorem—Regularity

Let $1 < p < \infty$ and let Ω be a Lipschitz domain with Lipschitz norm L. Let

$$\delta(X)^{-1} \left(\text{osc}_{B(X, \delta(X)/2)} a_{ij} \right)^2$$

be the density of a Carleson measure on all Carleson boxes of size at most r_0 with norm $C(r_0)$. Then there exists $\varepsilon = \varepsilon(\Lambda, n, p) > 0$ such that if $\max\{L, C(r_0)\} < \varepsilon$ then the $(R)_p$ regularity problem

$$\begin{cases}
Lu = 0 & \text{in } \Omega \\
u|_{\partial\Omega} = f & \text{on } \partial\Omega \\
\tilde{N}(\nabla u) \in L^p(\partial\Omega)
\end{cases}$$

is solvable for all f with $\|\nabla T f\|_{L^p(\partial\Omega)} < \infty$. Moreover, there exists a constant $C = C(\Lambda, n, a, p) > 0$ such that

$$\|\tilde{N}(\nabla u)\|_{L^p(\partial\Omega)} \leq C \|\nabla T f\|_{L^p(\partial\Omega)}.$$
The Boundary value problems for second order elliptic operators satisfying Carleson condition

Results for Neumann and Regularity problems in any dimension

Small Carleson norm

Main theorem—Neumann

Let $1 < p < \infty$ and let Ω be a Lipschitz domain with Lipschitz norm L. Let

$$\delta(X)^{-1} \left(\text{osc}_{B(X, \delta(X)/2)} a_{ij} \right)^2$$

be the density of a Carleson measure on all Carleson boxes of size at most r_0 with norm $C(r_0)$. Then there exists $\varepsilon = \varepsilon(\Lambda, n, p) > 0$ such that if $\max\{L, C(r_0)\} < \varepsilon$ then the $(N)_p$ Neumann problem

$$\begin{cases}
Lu = 0 & \text{in } \Omega \\
A\nabla u \cdot \nu = f & \text{on } \partial \Omega \\
\tilde{N}(\nabla u) & \in L^p(\partial \Omega)
\end{cases}$$

is solvable for all $f \in L^p(\partial \Omega)$.
Main theorem–Neumann

Let $1 < p < \infty$ and let Ω be a Lipschitz domain with Lipschitz norm L. Let

$$\delta(X)^{-1} \left(\text{osc}_{B(X, \delta(X)/2)} a_{ij} \right)^2$$

be the density of a Carleson measure on all Carleson boxes of size at most r_0 with norm $C(r_0)$. Then there exists $\varepsilon = \varepsilon(\Lambda, n, p) > 0$ such that if $\max\{L, C(r_0)\} < \varepsilon$ then the $(N)_p$ Neumann problem

$$\begin{cases}
Lu &= 0 \quad \text{in } \Omega \\
A \nabla u \cdot \nu &= f \quad \text{on } \partial\Omega \\
\tilde{N}(\nabla u) &\in L^p(\partial\Omega)
\end{cases}$$

is solvable for all $f \in L^p(\partial\Omega)$. Moreover, there exists a constant $C = C(\Lambda, n, a, p) > 0$ such that

$$\|\tilde{N}(\nabla u)\|_{L^p(\partial\Omega)} \leq C \|f\|_{L^p(\partial\Omega)}.$$
Main theorem—Neumann

Let $1 < p < \infty$ and let Ω be a Lipschitz domain with Lipschitz norm L. Let

$$\delta(X)^{-1} \left(\text{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2$$

be the density of a Carleson measure on all Carleson boxes of size at most r_0 with norm $C(r_0)$. Then there exists $\varepsilon = \varepsilon(\Lambda, n, p) > 0$ such that if $\max\{L, C(r_0)\} < \varepsilon$ then the $(N)_p$ Neumann problem

$$\begin{cases}
Lu = 0 & \text{in } \Omega \\
A \nabla u \cdot \nu = f & \text{on } \partial \Omega \\
\tilde{N}(\nabla u) & \in L^p(\partial \Omega)
\end{cases}$$

is solvable for all $f \in L^p(\partial \Omega)$. Moreover, there exists a constant $C = C(\Lambda, n, a, p) > 0$ such that

$$\| \tilde{N}(\nabla u) \|_{L^p(\partial \Omega)} \leq C \| f \|_{L^p(\partial \Omega)}.$$
Regularity problem - solving $p = 2$ is enough

M.D-Kirsch, 2012 Assume that $(R)_1$ (Regularity problem in Hardy-Sobolev space) is solvable.
Regularity problem - solving $p = 2$ is enough

M.D-Kirsch, 2012 Assume that $(R)_1$ (Regularity problem in Hardy-Sobolev space) is solvable.

Then for $p \in (1, \infty)$ we have

$$(R)_p \iff (D^*)_p'.$$
Regularity problem - solving $p = 2$ is enough

M.D-Kirsch, 2012 Assume that $(R)_1$ (Regularity problem in Hardy-Sobolev space) is solvable.

Then for $p \in (1, \infty)$ we have

$$(R)_p \iff (D^*)_p'. $$

Here $\frac{1}{p} + \frac{1}{p'} = 1$ and (D^*) is the Dirichlet problem for the adjoint operator L^*.
The Boundary value problems for second order elliptic operators satisfying Carleson condition

Proof - main ideas

Regularity problem

Regularity problem - solving \(p = 2 \) is enough

M.D-Kirsch, 2012 Assume that \((R)_1\) (Regularity problem in Hardy-Sobolev space) is solvable.

Then for \(p \in (1, \infty) \) we have

\[
(R)_p \iff (D^*)_p'.
\]

Here \(\frac{1}{p} + \frac{1}{p'} = 1 \) and \((D^*)\) is the Dirichlet problem for the adjoint operator \(L^* \). Since \((R)_2\) implies \((R)_1\) we get solvability of \((R)_p\) for small Carleson norm from solvability of \((R)_2\).
Regularity problem - solving $p = 2$ is enough

M.D-Kirsch, 2012 Assume that $(R)_1$ (Regularity problem in Hardy-Sobolev space) is solvable.

Then for $p \in (1, \infty)$ we have

$$(R)_p \iff (D^*)_{p'}.$$

Here $\frac{1}{p} + \frac{1}{p'} = 1$ and (D^*) is the Dirichlet problem for the adjoint operator L^*. Since $(R)_2$ implies $(R)_1$ we get solvability of $(R)_p$ for small Carleson norm from solvability of $(R)_2$.

The Boundary value problems for second order elliptic operators satisfying Carleson condition

- **Proof - main ideas**
- **Regularity problem**
Reduction to differentiable coefficients

The idea comes from [DPP]. For a matrix A satisfying our Carleson condition with ellipticity constant Λ one can find (by mollifying coefficients of A) a new matrix \tilde{A} with same ellipticity constant Λ such that \tilde{A} satisfies that
Reduction to differentiable coefficients

The idea comes from [DPP]. For a matrix A satisfying our Carleson condition with ellipticity constant Λ one can find (by mollifying coefficients of A) a new matrix \tilde{A} with same ellipticity constant Λ such that \tilde{A} satisfies that

$$\sup\{\delta(X)|\nabla \tilde{A}(Y)|^2; \ Y \in B(X, \delta(X)/2)\}$$
Reduction to differentiable coefficients

The idea comes from [DPP]. For a matrix A satisfying our Carleson condition with ellipticity constant Λ one can find (by mollifying coefficients of A) a new matrix \tilde{A} with same ellipticity constant Λ such that \tilde{A} satisfies that

$$\sup\left\{ \delta(X)|\nabla \tilde{A}(Y)|^2; \ Y \in B(X, \delta(X)/2) \right\}$$

and

$$\sup\left\{ \delta(X)^{-1}|(A - \tilde{A})(Y)|^2; \ Y \in B(X, \delta(X)/2) \right\}$$
Reduction to differentiable coefficients

The idea comes from [DPP]. For a matrix A satisfying our Carleson condition with ellipticity constant Λ one can find (by mollifying coefficients of A) a new matrix \tilde{A} with same ellipticity constant Λ such that \tilde{A} satisfies that

$$\sup\left\{ \delta(X)|(\nabla \tilde{A})(Y)|^2; \ Y \in B(X, \delta(X)/2) \right\}$$

and

$$\sup\left\{ \delta(X)^{-1}|(A - \tilde{A})(Y)|^2; \ Y \in B(X, \delta(X)/2) \right\}$$

are (small) Carleson norms.
Reduction to differentiable coefficients

The idea comes from [DPP]. For a matrix A satisfying our Carleson condition with ellipticity constant Λ one can find (by mollifying coefficients of A) a new matrix \tilde{A} with same ellipticity constant Λ such that \tilde{A} satisfies that

$$\sup\{\delta(X)|(\nabla\tilde{A})(Y)|^2; \ Y \in B(X, \delta(X)/2)\}$$

and

$$\sup\{\delta(X)^{-1}|(A - \tilde{A})(Y)|^2; \ Y \in B(X, \delta(X)/2)\}$$

are (small) Carleson norms. The solvability of the regularity problem for perturbed operators has been studied in Kenig-Pipher.
Reduction to differentiable coefficients

The idea comes from [DPP]. For a matrix A satisfying our Carleson condition with ellipticity constant Λ one can find (by mollifying coefficients of A) a new matrix \tilde{A} with same ellipticity constant Λ such that \tilde{A} satisfies that

$$\sup\{\delta(X)\left| (\nabla \tilde{A})(Y) \right|^2; \ Y \in B(X, \delta(X)/2)\}$$

and

$$\sup\{\delta(X)^{-1}\left| (A - \tilde{A})(Y) \right|^2; \ Y \in B(X, \delta(X)/2)\}$$

are (small) Carleson norms. The solvability of the regularity problem for perturbed operators has been studied in Kenig-Pipher.
\(p = 2 \) and Square function

Main goal is to establish and two estimates:

\[\| S(\nabla u) \|_{L^2}^2 \lesssim \text{boundary data} + \varepsilon \| \tilde{N}(\nabla u) \|_{L^2}^2 \]
$p = 2$ and Square function

Main goal is to establish and two estimates:

$$\|S(\nabla u)\|_{L^2}^2 \lesssim \text{boundary data} + \varepsilon \|\tilde{N}(\nabla u)\|_{L^2}^2$$

$$\|S(\nabla u)\|_{L^2}^2 \approx \|\tilde{N}(\nabla u)\|_{L^2}^2.$$
The Boundary value problems for second order elliptic operators satisfying Carleson condition

Proof - main ideas

Regularity problem

$p = 2$ and Square function

Main goal is to establish and two estimates:

$$\|S(\nabla u)\|_{L^2}^2 \lesssim \text{boundary data} + \varepsilon \|\tilde{N}(\nabla u)\|_{L^2}^2$$

$$\|S(\nabla u)\|_{L^2}^2 \approx \|\tilde{N}(\nabla u)\|_{L^2}^2.$$
The boundary value problems for second order elliptic operators satisfying Carleson condition

Proof - main ideas

Regularity problem

The Square function

For any $\nu : \Omega \to \mathbb{R}$ we consider

$$S(\nu)(Q) = \left(\int_{\Gamma(Q)} |\nabla \nu(X)|^2 \delta(X)^{2-n} \, dX \right)^{1/2},$$

for all $Q \in \partial \Omega$. Observe that

$$\|S(\nu)\|_{L^2}^2 \approx \int_{\Omega} |\nabla \nu(X)|^2 \delta(X) \, dX.$$.
The Square function

For any \(\nu : \Omega \rightarrow \mathbb{R} \) we consider

\[
S(\nu)(Q) = \left(\int_{\Gamma(Q)} |\nabla \nu(X)|^2 \delta(x)^{2-n} \, dX \right)^{1/2},
\]

for all \(Q \in \partial\Omega \). Observe that

\[
\|S(\nu)\|_{L^2}^2 \approx \int_{\Omega} |\nabla \nu(X)|^2 \delta(X) \, dX.
\]
First estimate

Key ingredient: Deal separately with

$$\| S(\nabla_T u) \|_{L^2}^2$$
First estimate

Key ingredient: Deal separately with

\[\| S(\nabla T u) \|_{L^2}^2 \text{ and } \| S(A \nabla u \cdot \nu) \|_{L^2}^2. \]
First estimate

Key ingredient: Deal separately with

\[\| S(\nabla_T u) \|_{L^2}^2 \text{ and } \| S(A \nabla u \cdot \nu) \|_{L^2}^2. \]

We establish a local estimate for \(\| S(\nabla_T u) \|_{L^2}^2 \). In local coordinates we might assume that \(\nabla_T u = (\partial_1 u, \partial_2 u, \ldots, \partial_{n-1} u) \) and \(\nabla_\nu u = \partial_n u. \)
First estimate

Key ingredient: Deal separately with

\[\| S(\nabla_T u) \|_{L^2}^2 \text{ and } \| S(A \nabla u \cdot \nu) \|_{L^2}^2. \]

We establish a local estimate for \(\| S(\nabla_T u) \|_{L^2}^2 \). In local coordinates we might assume that \(\nabla_T u = (\partial_1 u, \partial_2 u, \ldots, \partial_{n-1} u) \) and \(\nabla_\nu u = \partial_n u \).

For \(w_k = \partial_k u, \ i = k, 2, \ldots, n-1 \) we use the fact that

\[\| S(w_k) \|_{L^2}^2 \approx \int_{\mathbb{R}^{n-1}} \frac{a_{ij}}{a_{nn}} \partial_i w_k \partial_j w_k \ t \ dx \ dt. \]
First estimate

Key ingredient: Deal separately with

\[\| S(\nabla_T u) \|_{L^2}^2 \text{ and } \| S(A \nabla u \cdot \nu) \|_{L^2}^2. \]

We establish a local estimate for \(\| S(\nabla_T u) \|_{L^2}^2 \). In local coordinates we might assume that \(\nabla_T u = (\partial_1 u, \partial_2 u, \ldots, \partial_{n-1} u) \) and \(\nabla_\nu u = \partial_n u \).

For \(w_k = \partial_k u, \ i = k, 2, \ldots, n - 1 \) we use the fact that

\[\| S(w_k) \|_{L^2}^2 \approx \int_{\mathbb{R}^{n-1}} \frac{a_{ij}}{a_{nn}} \partial_i w_k \partial_j w_k \ t \, dx \, dt. \]

Next, we integrate by parts. Several type of terms arise, in particular:
First estimate

Key ingredient: Deal separately with

\[\| S(\nabla_T u) \|_{L^2}^2 \text{ and } \| S(A \nabla u \cdot \nu) \|_{L^2}^2. \]

We establish a local estimate for \(\| S(\nabla_T u) \|_{L^2}^2 \). In local coordinates we might assume that \(\nabla_T u = (\partial_1 u, \partial_2 u, \ldots, \partial_{n-1} u) \) and \(\nabla_{\nu} u = \partial_n u \).

For \(w_k = \partial_k u, \ i = k, 2, \ldots, n-1 \) we use the fact that

\[\| S(w_k) \|_{L^2}^2 \approx \int_{\mathbb{R}^{n-1}} \frac{a_{ij}}{a_{nn}} \partial_i w_k \partial_j w_k \ t \ dx \ dt. \]

Next, we integrate by parts. Several type of terms arise, in particular:
Terms of the estimate:

\[
\int\int_{\mathbb{R}^n} \frac{1}{a_{nn}} w_k(Lw_k)t \, dxdt
\]

Here we use the fact that for \(k < n \) the PDE \(w_k \) satisfies has relatively “nice” right hand side.
Terms of the estimate:

\[\int \int_{\mathbb{R}^n} \frac{1}{a_{nn}} w_k(Lw_k) t \, dx dt \]

Here we use the fact that for \(k < n \) the PDE \(w_k \) satisfies has relatively "nice" right hand side. However, the estimate fails for \(k = n \).
The Boundary value problems for second order elliptic operators satisfying Carleson condition

Proof - main ideas

Regularity problem

Terms of the estimate:

\[\int \int_{\mathbb{R}^n} \frac{1}{a_{nn}} w_k(Lw_k)t \, dx dt \]

Here we use the fact that for \(k < n \) the PDE \(w_k \) satisfies has relatively “nice” right hand side. However, the estimate fails for \(k = n \).

\[\int \int_{\mathbb{R}^n} w_k(\partial_j w_k) \frac{a_{nj}}{a_{nn}} \, dx dt \]
Terms of the estimate:

\[\int \int_{\mathbb{R}^n} \frac{1}{a_{nn}} w_k(Lw_k)t \, dx \, dt \]

Here we use the fact that for \(k < n \) the PDE \(w_k \) satisfies has relatively “nice” right hand side. However, the estimate fails for \(k = n \).

\[\int \int_{\mathbb{R}^n} w_k(\partial_j w_k) \frac{a_{nj}}{a_{nn}} \, dx \, dt \]

For \(j = n \) this gives us a boundary term \(-\frac{1}{2} \int_{\mathbb{R}^{n-1}} w_k^2 \, dx\).
 Terms of the estimate:

\[
\iint_{\mathbb{R}^n} \frac{1}{a_{nn}} w_k(Lw_k) t \, dx \, dt
\]

Here we use the fact that for \(k < n \) the PDE \(w_k \) satisfies has relatively “nice” right hand side. However, the estimate fails for \(k = n \).

\[
\iint_{\mathbb{R}^n} w_k(\partial_j w_k) \frac{a_{nj}}{a_{nn}} \, dx \, dt
\]

For \(j = n \) this gives us a boundary term \(-\frac{1}{2} \int_{\mathbb{R}^{n-1}} w_k^2 \, dx\).
The Boundary value problems for second order elliptic operators satisfying Carleson condition

Proof - main ideas

Regularity problem

Terms of the estimate:

\[\int \int_{\mathbb{R}^n} |w_k||\nabla w_k||\nabla A| t \; dx dt \]

This is the error term where the Carleson condition on the coefficients is used. This term has an estimate
Terms of the estimate:

\[\int \int_{\mathbb{R}^n} |w_k| |\nabla w_k| |\nabla A| t \, dx \, dt \]

This is the error term where the Carleson condition on the coefficients is used. This term has an estimate

\[\| (\nabla A)^2 t \|_{\text{Carl}} \| S(w_k) \|_{L^2} \| N(\nabla u) \|_{L^2}. \]
Terms of the estimate:

\[\int \int_{\mathbb{R}^n} |w_k| |\nabla w_k| |\nabla A| t \, dx \, dt \]

This is the error term where the Carleson condition on the coefficients is used. This term has an estimate:

\[\| (\nabla A)^2 t \|_{\text{Carl}} \| S(w_k) \|_{L^2} \| N(\nabla u) \|_{L^2}. \]

For the remaining estimate of the square function of the co-normal derivative we use the original equation \(Lu = 0 \) together with the established estimate for \(\| S(\nabla_T u) \|^2_{L^2} \).
Terms of the estimate:

\[\int \int_{\mathbb{R}^n} |w_k| |\nabla w_k| |\nabla A| t \, dx \, dt \]

This is the error term where the Carleson condition on the coefficients is used. This term has an estimate

\[\| (\nabla A)^2 t \|_{\text{Carl}} \| S(w_k) \|_{L^2} \| N(\nabla u) \|_{L^2}. \]

For the remaining estimate of the square function of the co-normal derivative we use the original equation \(Lu = 0 \) together with the established estimate for \(\| S(\nabla_T u) \|_{L^2}^2 \).
Second estimate: \[\| S(\nabla u) \|_{L^2}^2 \approx \| N(\nabla u) \|_{L^2}^2 \]

Difficult direction: \[\| N(\nabla u) \|_{L^2}^2 \lesssim \| S(\nabla u) \|_{L^2}^2. \]
Second estimate: \(\| S(\nabla u) \|_{L^2}^2 \approx \| N(\nabla u) \|_{L^2}^2 \)

Difficult direction: \(\| N(\nabla u) \|_{L^2}^2 \lesssim \| S(\nabla u) \|_{L^2}^2 \).

The proof relies on a stopping time argument of Kenig-Pipher-Toro.
Second estimate: \[\| S(\nabla u) \|_{L^2}^2 \approx \| N(\nabla u) \|_{L^2}^2 \]

Difficult direction: \[\| N(\nabla u) \|_{L^2}^2 \lesssim \| S(\nabla u) \|_{L^2}^2. \]

The proof relies on a stopping time argument of Kenig-Pipher-Toro.
Neumann problem - solving for $p = 2$ and induction for integer p

We do not know an analogue of the result M.D-Kirsch, 2012.

Strategy:
Neumann problem - solving for $p = 2$ and induction for integer p

We do not know an analogue of the result M.D-Kirsch, 2012.

Strategy:

Solve the Neumann problem for $p = 2$ (using solvability of the $(R)_2$).
Neumann problem - solving for $p = 2$ and induction for integer p

We do not know an analogue of the result M.D-Kirsch, 2012.

Strategy:

Solve the Neumann problem for $p = 2$ (using solvability of the $(R)_2$).

Next, establish solvability of $(N)_p$ using $(R)_p$ and induction (for p integer $p \geq 3$).
Neumann problem - solving for $p = 2$ and induction for integer p

We do not know an analogue of the result M.D-Kirsch, 2012.

Strategy:

Solve the Neumann problem for $p = 2$ (using solvability of the $(R)_2$).

Next, establish solvability of $(N)_p$ using $(R)_p$ and induction (for p integer $p \geq 3$).
The induction step:

Let \(p \geq 2 \) be an integer, \(0 \leq k \leq p - 2 \) and integer and \(u \) be a solution to \(Lu = \text{div}A \nabla u = 0 \). Then there exists \(\varepsilon > 0 \) such that if the Carleson norm of the coefficients \(C(r_0) < \varepsilon \) then for some \(K = K(\Omega, \Lambda, n, \varepsilon, m, k) > 0 \)

\[
\int\int_{\Omega_r} |\nabla_T u|^{p-k-2} |H|^k |\nabla H|^2 \delta(X) \, dX
\]

\[
\leq (p - k - 2)K \int\int_{\Omega_{2r}} |\nabla_T u|^{p-k-3} |H|^{k+1} |\nabla H|^2 \delta(X) \, dX
\]

\[
+ C(r) \int\int_{\Omega \setminus \Omega_r} |\nabla u|^p \, dX
\]

\[
+ K \int_{\partial\Omega} |H|^p \, dx.
\]

Here \(H = a_{ni} \partial_i u \).
The induction step:

Let $p \geq 2$ be an integer, $0 \leq k \leq p - 2$ and integer and u be a solution to $Lu = \text{div} A \nabla u = 0$. Then there exists $\varepsilon > 0$ such that if the Carleson norm of the coefficients $C(r_0) < \varepsilon$ then for some $K = K(\Omega, \Lambda, n, \varepsilon, m, k) > 0$

\[
\int\int_{\Omega_r} |\nabla T u|^{p-k-2} |H|^k |\nabla H|^2 \delta(X) dX
\]

\[
\leq (p - k - 2)K \int\int_{\Omega_{2r}} |\nabla T u|^{p-k-3} |H|^{k+1} |\nabla H|^2 \delta(X) dX
\]

\[
+ C(r) \int\int_{\Omega \setminus \Omega_r} |\nabla u|^p dX
\]

\[
+ K \int_{\partial \Omega} |H|^p \, dx.
\]

Here $H = a_{ni} \partial_i u$. This is the co-normal derivative in \mathbb{R}^n_+.
The induction step:

Let \(p \geq 2 \) be an integer, \(0 \leq k \leq p - 2 \) and integer and \(u \) be a solution to \(Lu = \text{div} A \nabla u = 0 \). Then there exists \(\varepsilon > 0 \) such that if the Carleson norm of the coefficients \(C(r_0) < \varepsilon \) then for some \(K = K(\Omega, \Lambda, n, \varepsilon, m, k) > 0 \)

\[
\int \int_{\Omega_r} | \nabla T u |^{p-k-2} | H |^k | \nabla H |^2 \delta(X) \, dX
\leq (p - k - 2) K \int \int_{\Omega_{2r}} | \nabla T u |^{p-k-3} | H |^{k+1} | \nabla H |^2 \delta(X) \, dX
+ C(r) \int \int_{\Omega \setminus \Omega_r} | \nabla u |^p \, dX
+ K \int_{\partial \Omega} | H |^p \, dx.
\]

Here \(H = a_{ni} \partial_i u \). This is the co-normal derivative in \(\mathbb{R}^n_+ \).
Open problem

Is the following analogue of result of Kenig-Pipher, 2001 true?
Open problem

Is the following analogue of result of Kenig-Pipher, 2001 true?

If

$$\delta(X)^{-1} \left(\text{osc}_{B(x,\delta(x)/2)} a_{ij} \right)^2$$

is a density of Carleson measure on a Lipschitz domain Ω then $(R)_p$
Open problem

Is the following analogue of result of Kenig-Pipher, 2001 true?

If

\[\delta(X)^{-1} \left(\text{osc}_{B(X, \delta(X)/2)} a_{ij} \right)^2 \]

is a density of Carleson measure on a Lipschitz domain \(\Omega \) then \((R)_p\)
(and \((N)_p\))
Open problem

Is the following analogue of result of **Kenig-Pipher, 2001** true?

If

\[\delta(X)^{-1} \left(\text{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2 \]

is a density of Carleson measure on a Lipschitz domain \(\Omega \) then \((R)_p\) (and \((N)_p\)) boundary value problems are solvable for some \(p > 1 \).
Open problem

Is the following analogue of result of Kenig-Pipher, 2001 true?

If

\[\delta(X)^{-1} \left(\text{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2 \]

is a density of Carleson measure on a Lipschitz domain \(\Omega \) then \((R)_p \) (and \((N)_p \)) boundary value problems are solvable for some \(p > 1 \).

Hint of solution for the Regularity problem:
Open problem

Is the following analogue of result of Kenig-Pipher, 2001 true?

If

$$\delta(X)^{-1} \left(\text{osc}_{B(X, \delta(X)/2)} a_{ij} \right)^2$$

is a density of Carleson measure on a Lipschitz domain \(\Omega \) then \((R)_p\) (and \((N)_p\)) boundary value problems are solvable for some \(p > 1 \).

Hint of solution for the Regularity problem: Prove that \((R)_1\) holds under the assumption (1).
Open problem

Is the following analogue of result of Kenig-Pipher, 2001 true?

If

\[\delta(X)^{-1} \left(\text{osc}_{B(X, \delta(X)/2)} a_{ij} \right)^2 \]

is a density of Carleson measure on a Lipschitz domain \(\Omega \) then \((R)_p\) (and \((N)_p\)) boundary value problems are solvable for some \(p > 1 \).

Hint of solution for the Regularity problem: Prove that \((R)_1\) holds under the assumption (1). Then by [M.D-Kirsch, 2012] \((R)_{1+\varepsilon}\) holds for some small \(\varepsilon > 0 \).
Open problem

Is the following analogue of result of Kenig-Pipher, 2001 true?

If

$$\delta(X)^{-1} \left(\text{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2$$

is a density of Carleson measure on a Lipschitz domain Ω then $(R)_p$ (and $(N)_p$) boundary value problems are solvable for some $p > 1$.

Hint of solution for the Regularity problem: Prove that $(R)_1$ holds under the assumption (1). Then by [M.D-Kirsch, 2012] $(R)_{1+\varepsilon}$ holds for some small $\varepsilon > 0$.