Approximate Solutions to Second Order Parabolic Equations I: analytic estimates

Radu Constantinescu,¹, a) Nick Costanzino,², b) Anna L. Mazzucato,², c) and Victor Nistor³, d)

1) Interest Rate Quantitative Research Group, JPMorganChase, New York, NY, U.S.A.
2) Pennsylvania State University, Mathematics Department, University Park, PA 16802, U.S.A.
3) Pennsylvania State University, Mathematics Department, University Park, PA 16802, U.S.A. and Institute of Mathematics of the Romanian Academy, PO BOX 1-764, 014700 Bucharest, Romania

(Dated: 6 July 2010)

We establish a new type of local asymptotic formula for the Green’s function $G_t(x, y)$ of a uniformly parabolic linear operator $\partial_t - L$ with non-constant coefficients using dilations and Taylor expansions at a point $z = z(x, y)$, for a function z with bounded derivatives such that $z(x, x) = x \in \mathbb{R}^N$. Our method is based on dilation at z, Dyson and Taylor series expansions. We use the Baker-Campbell-Hausdorff commutator formula to explicitly compute the terms in the Dyson series. Our procedure leads to an explicit, elementary, algorithmic construction of approximate solutions to parabolic equations which are accurate to arbitrary prescribed order in the short-time limit.

We establish mapping properties and precise error estimates in the exponentially weighted, L^p-type Sobolev spaces $W^{s,p}_a(\mathbb{R}^N)$ that appear in practice.

PACS numbers: 02.30.Jr, 05.10.Gg

Keywords: Parabolic equations, Fokker-Planck, Green’s function, Dyson series, commutator, Taylor series, short-time asymptotics, heat kernel, weighted Sobolev space

a) Electronic mail: radu.constantinescu@jpmorgan.com
b) Electronic mail: costanzi@math.psu.edu

c) Electronic mail: alm24@psu.edu; author partially supported by NSF Grant DMS-0708902.
d) Electronic mail: nistor@math.psu.edu; author partially supported by NSF grant DMS-0555831, DMS-0713743, and OCI-0749202
I. INTRODUCTION

The aim of this paper is to derive explicitly computable short-time asymptotic expansions for the Green’s function of uniformly parabolic second-order operators with variable, but time-independent, coefficients, and obtain sharp error bounds for the approximation in both weighted and unweighted Sobolev spaces. The expansions that our method gives are akin to known short-time expansions of heat kernels on manifolds, but are more general and adapt well to be combined with numerical methods in applications. In this paper, we work on full n-dimensional space, and our error bounds are global in \mathbb{R}^n.

More precisely, we consider the class L of second-order differential operators L with smooth, uniformly bounded coefficients $Lu(x) := \sum_{i,j=1}^{N} a_{ij}(x) \partial_i \partial_j u(x) + \sum_{k=1}^{N} b_k(x) \partial_k u(x) + c(x) u(x)$, (1)

where $x = (x_1, ..., x_N) \in \mathbb{R}^N$, $\partial_k := \frac{\partial}{\partial x_k}$. We also assume that L is uniformly strongly elliptic, namely that there exists a constant $\gamma > 0$ such that

$$\sum_{ij} a_{ij}(x) \xi_i \xi_j \geq \gamma \|\xi\|^2,$$

(2)

for all $(\xi, x) \in \mathbb{R}^N \times \mathbb{R}^N$. We define the matrix $A(x) := [a_{ij}(x)]$, which, without loss of generality, we can assume to be symmetric. The set of operators $L \in L$ satisfying (2) will be denoted by \mathbb{L}_γ.

We study the short time asymptotic of the initial value problem (IVP) for the parabolic operator $\partial_t - L$:

$$\begin{cases}
\partial_t u(t, x) - Lu(t, x) = g(t, x) & \text{in } (0, \infty) \times \mathbb{R}^N \\
u(0, x) = f(x), & \text{on } \{0\} \times \mathbb{R}^N,
\end{cases}$$

(3)

for u, f, and g in suitable function spaces. By Duhamel’s principle, we may assume $g = 0$.

When $b(x), c(x) \neq 0$ in (1), the corresponding parabolic equation $\partial_t u - Lu = 0$ is collectively referred to as a Fokker-Planck equation. Fokker-Planck equations arise in many applications, for example in statistical mechanics1,2, and more generally in probability.

We can also replace \mathbb{R}^N with a manifold of bounded geometry3,4, which thus allows us to treat also some degenerate elliptic operators L. In particular, the approach in this paper can
be extended to the case of operators of the form \(\partial_t - (ax^2 \partial_x^2 + bx \partial_x + c) \) acting on \(\mathbb{R}_t \times \mathbb{R}_x \) and to other operators that appear in practice\(^5\).

Under certain growth conditions on \(u \) and \(f \) (see for instance\(^6\), page 237), the unique solution of the IVP (3) is obtained from the so-called Green’s function, or fundamental solution or heat kernel \(G^L \in C^\infty((0, \infty) \times \mathbb{R}_x \times \mathbb{R}_y) \) as

\[
 u(t, x) = \int_{\mathbb{R}_x} G^L(t, x, y) f(y) dy, \quad t > 0.
\] (4)

We will often write \(G^L(t, x, y) = G^L_t(x, y) \). The fundamental solution is the kernel of the solution operator \(e^{tL} \) for the IVP (3).

For \(L \) with constant coefficients and for a few other cases, one can explicitly compute the kernel \(G^L \). In general however, it is not known how to provide explicit formulas for \(G^L \), though there is a large literature on developing methods to obtaining good asymptotic formulas for the Green’s function for \(t \) small and \(x \) close to \(y \). For example, interpreting the operator \(L \) as a Laplace-Beltrami operator on a manifold plus lower order terms, leads to an asymptotic expansions of the form

\[
 G_t(x, y) = e^{-\frac{d(x, y)^2}{4t}} \left(G^{(0)}(x, y) + G^{(1)}(x, y)t + G^{(2)}(x, y)t^2 + \ldots \right),
\]

as \(t \to 0_+ \), where \(d(x, y) \) is the geodesic distance between \(x \) and \(y \) and \(G^{(j)}(x, y) \) are smooth functions in \(x \) and \(y \). Among the vast literature we refer to\(^7\)–\(^13\), (see also\(^14\)–\(^17\) for a pseudo-differential operator perspective). However, one difficulty in the practical implementation of this geometric approach is that in general there are no formulas for the geodesic distance, which thus needs to be accurately approximated or computed numerically.

A related short-time asymptotic approach uses oscillatory type integrals, which gives:

\[
 G^L(t, x, y) \sim \sum_{j \geq 0} t^{(j-n)/2} p_j \left(x, t^{-1/2}(x-y) \right) e^{-\frac{(x-y)^T A(x)^{-1} (x-y)}{4t}}, \quad (5)
\]

as \(t \to 0_+ \), where \(p_j(x, w) \) is a polynomial of degree \(j \) in \(w \) (We follow here Taylor\(^17\) (Chapter 7, Section 13), where a heat parametrix was constructed on compact manifolds.) Finally, we mention the recent approaches in\(^18\) using multivariate Hermite expansions, and in\(^19\) using an alternate construction of a parametrix approximation.

In our paper, we devise a new, elementary method to obtain asymptotic expansions similar and even more general than (5). Our method is based on dilating the coefficients
of L around a point z with ratio $t^{1/2}$, then expanding in a Taylor series in t, Equation 33. We regard this expansion as a perturbation of the operator L_0 obtained from L by freezing coefficients at z. We then use a Dyson-series perturbative expansion, Equation (26), to approximate the heat-kernel of L. The Dyson-series expansion turns out to be explicitly computable using the Baker-Campbell-Hausdorff commutator formula. We call the resulting method the \textit{Dyson-Taylor commutator method}. Our method is accurate and stable in practical implementations5. In particular, our approximation is valid uniformly in x and y, provided t is small enough.

To complement, there is a well-established literature on pointwise estimates for heat kernels, usually of Gaussian type. We refer the reader for example to20–28. For our approximation, we require and obtain an control via integral estimates on all derivatives of the kernel.

Since the iterative formula is obtained via repeated applications of Duhamel’s principle, we could also treat certain classes of semilinear equations following Kato’s method, which allows to take rougher data as well (see29 in the context of the Navier-Stokes equations). We remark here that a similar parabolic rescaling combined with Taylor expansions has been used in obtaining a short-time expansion for stochastic flows (see30,31).

Our main result is the following theorem. We introduce the weight $\langle x \rangle = (1 + |x|^2)^{1/2}$. Below, $W^{m,p}_a := W^{m,p}_a(\mathbb{R}^N)$ is the exponentially weighted Sobolev space defined in Equation (19). When $a = 0$, we recover the usual Sobolev spaces. The need to consider exponentially weighted spaces arises in applications to probability, in particular in stochastic volatility models. For instance, after making the substitution $x = e^y$, the payoff usually associated with the Black-Scholes equation (Equation (8) below) belongs to $W^{m,p}_a$ with $m = 1$, $a < -1$, and p large. We also denote

$$G(z; x) = (4\pi)^{-N/2} \det(A(z))^{-1/2} e^{-x^T A(z)^{-1} x/4},$$

(6)

where z is a given point in \mathbb{R}^N. It is interesting to mention that the Black-Scholes equation fits into the framework of manifolds with cylindrical ends, to which the results of Krainer32 apply. Manifolds with cylindrical ends are the simplest examples of manifolds with bounded geometry.

To approximate the value of the Green function $G_t(x, y)$ at some point (x, y), we will use a Taylor-type expansion at the point z of a suitable parabolic rescaling of the coefficients
of L, which, however will be chosen depending of x and y, $z = z(x, y)$. Typically $z(x, y) = \lambda x + (1 - \lambda)y$, for some fixed λ, but we can allow more general choices. Namely, we shall say that $z(x, y)$ is admissible if $z(x, x) = x$ and all derivatives $\partial^\alpha z$ are bounded for $\alpha \neq 0$.

Theorem I.1. Let $\mu \in \mathbb{Z}_+$, $L \in \mathbb{L}_\gamma$, $z = z(x, y)$ be an admissible function. Let $\Psi^\ell(z, x, y) = \sum a_{\alpha,\beta}(z)(x - z)^\alpha(y - z)^\beta$, $|\alpha| \leq \ell$, $|\beta| \leq 3\ell$, $a_{\alpha,\beta} \in C^\infty_0(\mathbb{R}^N)$, be the functions provided by the Dyson-Taylor commutator method explained in the second half of this Introduction. Define for each integer $0 \leq \ell \leq \mu$,

$$G^\mu_{t}(x, y) := t^{-N/2} \sum_{\ell=0}^{\mu} t^{\ell/2} \Psi^\ell(z, z + \frac{x - z}{t^{1/2}}, z + \frac{y - z}{t^{1/2}}) G(z; \frac{x - y}{t^{1/2}}),$$

where $z = z(x, y)$. Define the error term E^μ_{t} in the approximation of the Green’s function by:

$$e^{tL} f(x) = \int_{\mathbb{R}^N} G^\mu_{t}(x, y) f(y) dy + t^{(\mu + 1)/2} E^\mu_{t} f(x).$$

Then, for any $f \in W^m_a(\mathbb{R}^N)$, $a \in \mathbb{R}$, $m \geq 0$, $1 < p < \infty$, we have

$$\|E^\mu_{t} f\|_{W^{m+k}_a} \leq C t^{-k/2} \|f\|_{W^m_a},$$

for any $t \in [0, T]$, $0 < T < \infty$, $k \in \mathbb{Z}_+$, with C independent of $t \in [0, T]$.

The function $G^\mu_{t}(x, y)$ will be called the μth-order approximation kernel for the solution operator e^{tL}.

See Subsection I A at the end of this introduction for a more detailed description of how the approximation kernel $G^\mu_{t}(x, y)$ is obtained. In Section IV we give an algorithm construction of the functions Ψ^ℓ.

For the particular choice $z(x, y) = x$, our approximation coincides with the expansion (5) above. Our result is more general, however. This additional accuracy obtained for a suitable choice of $z(x, y) \neq x$ and in view also of the mid-point quadrature rule (which leads to a higher order of convergence) justifies the extra generality of including arbitrary admissible z in our method.

A localization procedure as in 4 allows us to pass from operators on \mathbb{R}^N to operators on manifolds M of bounded geometry (work in progress3), again following33 and 4. More precisely, our results extend to operators of the form $L = \sum_{ij} a_{ij} \partial_i \partial_j + \sum_{ij} b_{ij} \partial_i + c$, defined on a subset Ω of \mathbb{R}^N such that the coefficients are bounded in normal coordinates with respect
to the metric $g = \sum_{ij}^N a^{ij} dx_i dx_j$, assumed to be complete of bounded geometry on Ω. Here the matrix $[a^{ij}]$ is the inverse of the matrix A, following the usual convention. Such metrics arise naturally when resolving boundary singularities. (See16 for a systematic treatment of heat calculus on manifolds with boundary). We refer to33–36 for recent papers dealing with partial differential equations on manifolds with metrics of this form. In particular, we can deal with certain operators having polynomial coefficients such as those arising in probability and its applications, for example in the Black-Scholes option pricing Equation37

\begin{equation}
Lu(x) = \sigma x^2 \partial_x^2 u(x)/2 + r(x \partial_x u(x) - u(x)), \tag{8}
\end{equation}

where in this context t is the time to option expiry and in some local and stochastic volatility models (c.f.38–45).

A good framework for obtaining differential operators with unbounded coefficients that satisfy our assumptions is that of Lie manifolds34. This point will be discussed in detail in3. Explicit formulas for concrete, practical applications of our method are given in5. In addition, our methods generalize to operators with time-dependent coefficients, satisfying certain conditions. This extension is addressed in a forthcoming paper46.

We conclude this first part of the introduction with an outline of the paper. In Section II, we define the weighted and regular Sobolev spaces of initial data for the parabolic equation and introduce the class of operators L under study. We also briefly discuss mapping properties of the semigroup generated by L and use them to justify the Dyson (or time-ordered) perturbation expansion of e^{tL}. In Section III, we exploit local in space and time dilations of the Green’s function together with a certain Taylor expansion of the operator L to rewrite the perturbation expansion as a formal power series in $s = \sqrt{t}$. In Section IV, we employ commutator estimates to derive computable formulas for each term in the expansion. This leads to the Dyson-Taylor commutator method to determine the functions Ψ^t used in Theorem I.1.

Finally, in Section V, we rigorously justify our expansion and derive error bounds in time by means of pseudodifferential calculus.
A. The approximate Green function

We close this Introduction by describing in more detail the Dyson-Taylor commutator method used to define approximation kernel $G_{l}^{[n,z]}$. Given an operator T with smooth kernel, we denote its kernel by $T(x,y)$, as customary.

Given a fixed point $z \in \mathbb{R}^{N}$ and $s > 0$, we define $L_{s,z} := \sum_{i,j=1}^{N} a_{ij}^{s,z}(x) \partial_{i} \partial_{j} + s \sum_{i=1}^{N} b_{i}^{s,z}(x) \partial_{i} + s^{2} c^{s,z}(x)$, where for a generic function f we set $f^{s,z}(x) = f(z + s(x - z))$. Hence, z acts as a fixed dilation center. We then Taylor expand this operator in s around 0 to order n:

$$L_{s,z} = \sum_{m=0}^{n} s^{m} L_{m}^{z} + V_{n+1}^{s,z} = \sum_{m=0}^{n+1} s^{m} L_{m}^{z},$$

where L_{j}^{z}, $0 \leq j \leq n$, are differential operators with polynomial coefficients that do not depend on s, whereas L_{n+1}^{z} has smooth coefficients that, however, do depend on s (although this dependence is not shown in the notation). Hence, $V_{n+1}^{s,z} = s^{n+1} L_{n+1}^{z}$ is the remainder of the Taylor expansion. The order n will be chosen later. In particular, we observe that

$$L_{0}^{z} = \sum_{i,j} a_{ij}(z) \partial_{i} \partial_{j}.$$

For any fixed, positive integers $k \leq n + 1$ and ℓ, we shall denote by $\mathfrak{A}_{k,\ell}$ the set of multi-indexes $\alpha = (\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}) \in \mathbb{N}^{k}$, such that $|\alpha| := \sum \alpha_{j} = \ell$. (Hence, $k \leq \ell$.) Let Σ_{k} be the k-dimensional unit simplex. Then, for each multi-index $\alpha = (\alpha_{1}, \ldots, \alpha_{k}) \in \mathfrak{A}_{k,\ell}$, $k \leq n$, we introduce

$$\Lambda_{\alpha,z} := \int_{\Sigma_{k}} e^{\tau L_{0}^{z}} L_{\alpha_{1}}^{z} e^{\tau L_{0}^{z}} L_{\alpha_{2}}^{z} \cdots L_{\alpha_{k}}^{z} e^{\tau L_{0}^{z}} d\tau.$$

Observe that k, ℓ are unique given α.

The main point is that the operators Λ_{α} can be computed explicitly as follows. Let us denote by $\mathcal{D}(a,b)$ the vector space of all differentiations of polynomial degree at most a and order at most b. (By polynomial degree of a differentiation we mean the highest power of the polynomials appearing as coefficients.) Then, for any $L_{0} \in \mathcal{D}(0,2)$ that is uniformly strongly elliptic and for any $L_{m} \in \mathcal{D}(m,2)$, we have a differential operator $P_{m}(L_{0}, L_{m}; \theta, x, \partial)$ given by the formula $e^{\theta L_{0}} L_{m} = P_{m}(L_{0}, L_{m}; \theta, x, \partial)e^{\theta L_{0}}$, where $\theta > 0$ (see Lemma IV.5). Let Σ_{k} be the unit k-dimensional simplex. Next, for any given multi-index $\alpha \in \mathfrak{A}_{k,\ell}$ with $k \leq n$, we define $\mathcal{P}_{\alpha}(x, z, \partial) := \int_{\Sigma_{k}} \prod_{i=1}^{k} P_{\alpha_{i}}(L_{0}^{z}, L_{\alpha_{i}}, 1 - \sigma_{i}, x, \partial) d\sigma$. Then

$$\Lambda_{\alpha,z} = \mathcal{P}_{\alpha}(x, z, \partial)e^{L_{0}^{z}},$$

7
where the product is the composition of operators and P_α is a differential operator of order $2k + \ell$ in x and polynomial degree $\leq \ell$ in $(x - z)$ (see Lemma IV.6).

Since z is arbitrary, but fixed at this stage, if L_0 is the operator in (10) then $e^{t \frac{\partial}{\partial z}}(x, y)$ can be explicitly calculated and it agrees with the function $G(z, x - y)$ introduced in Equation (6). Therefore, it can be easily seen from (12), that

$$\Lambda_{\alpha, z}(x, y) = \mathcal{P}(z, x, y)G(z; x - y),$$

for some $\mathcal{P}(z, x, y) = \sum a_{\alpha, \beta}(z)(x - z)^\alpha(x - y)^\beta$, $|\alpha| \leq \ell$, $|\beta| \leq 3\ell$, $a_{\alpha, \beta} \in C_b^\infty(\mathbb{R}^N)$. In particular, all $\Lambda_{\alpha, z}$ are operators with smooth kernels, thus denoted $\Lambda_{\alpha, z}(x, y)$. Let us fix for the time being a smooth function $z : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N$ whose properties will be made precise below. (Two typical examples are $z(x, y) = (x + y)/2$ and $z(x, y) = x$, which suffice in many applications.)

Our approximation will be obtained by combining Lemma III.2 with the perturbative estimate of Equation (43) at some point $z = z(x, y)$ using the dilation with center $z(x, y)$ and denoting $s^2 = t$. Then, for any $\mu \geq n$, we define

$$G_t^{[\mu, z]}(x, y) := s^{-N}e^{L_0}(z + s^{-1}(x - z), z + s^{-1}(y - z))$$

$$+ \sum_{\ell=1}^{\mu} \sum_{k=1}^{\ell} \sum_{\alpha \in \mathcal{A}_k, \ell} s^\ell \Lambda_{\alpha, z}(z + s^{-1}(x - z), z + s^{-1}(y - z)).$$

(13)

where $G_t^{[\mu, z]}(x, y)$ depends on L. The justification of the above definition for the approximation is that a Dyson series expansion of order $n + 1$ gives us

$$G_t(x, y) := s^{-N}e^{L_0}(z + s^{-1}(x - z), z + s^{-1}(y - z))$$

$$+ \sum_{\ell=1}^{(n+1)^2 \max\{\ell, n+1\}} \sum_{k=1}^{\ell} \sum_{\alpha \in \mathcal{A}_k, \ell} s^\ell \Lambda_{\alpha, z}(z + s^{-1}(x - z), z + s^{-1}(y - z)).$$

(14)

where for $k = n + 1$ and $\alpha = (\alpha_1, \ldots, \alpha_k) \in \mathcal{A}_k, \ell$, we introduce

$$\Lambda_{\alpha, z} := \int_{\Sigma_k} e^{\gamma_0 L_{\alpha_1}^{\gamma_0} L_{\alpha_2}^{\gamma_0} \cdots L_{\alpha_k}^{\gamma_0}} d\tau.$$

(15)

The difference between Equations (13) and (14) is that the sum in the first equation contains exactly the terms with s^ℓ, $\ell \leq n$, from the second equation. The difference between Equations (11) and (15) is in the last exponential. Note that $\Lambda_{\alpha, z}$ does not depend on s if $\ell = |\alpha| \leq n$, but it may depend on s otherwise. In any case, all the terms $\Lambda_{\alpha, z}$ that depend
on s will be included in the error term. All terms $\Lambda_{\alpha,z}$ with $\mu < |\alpha| \leq n$, which do not depend on s, will also be included in the error. We remark that the error term is never computed explicitly, as only the μth order approximation kernel is needed. Therefore, while μ will usually be small in applications, we can take n as large as needed to justify the error bounds of Theorem I.1. In Section V, we will show that $n > \mu + N - 1$ suffices.

II. PRELIMINARIES

We begin by discussing in more details the class of second-order operators L of the form (1) that are the focus of our work. Below we set

$$C^\infty_b(\mathbb{R}^N) := \{f : \mathbb{R}^N \to \mathbb{C}, \partial^\alpha f \text{ bounded for all } \alpha \}. \quad (16)$$

Definition II.1. We shall denote by \mathbb{L} the set of differential operators L of the form

$$L := \sum_{i,j=1}^{N} a_{ij} \partial_i \partial_j + \sum_{k=1}^{N} b_k \partial_k + c, \quad (17)$$

where $a_{ij}, b_k, c \in C^\infty_b(\mathbb{R}^N)$ are real valued. We shall denote by \mathbb{L}_γ the subset of operators $L \in \mathbb{L}$ satisfying the uniform strong ellipticity estimate (2) with the ellipticity constant γ. We let $A = [a_{ij}]$ and assume additionally that A is symmetric, which can be achieved simply by replacing A with its symmetric part, since this does not change our differential operator.

The above definition can be extended to operators on manifolds of bounded geometry M (see4,33,47). For example, when $M = \mathbb{R}^N$ with the Euclidean metric, the class \mathbb{L} considered in4 coincides with the class \mathbb{L} considered in this paper.

In what follows, we denote the inner product on $L^2(\mathbb{R}^N)$ by $(u, v) = \int_{\mathbb{R}^N} u(x)\overline{v(x)}dx$. Let us denote $\langle \xi \rangle := (1 + |\xi|^2)^{1/2}$ and let \hat{u} be the Fourier Transform of u. We also recall the definition of and some basic facts about L^p-based Sobolev spaces $W^{r,p}(\mathbb{R}^N)$. For $1 < p < \infty$, $r \in \mathbb{R}$:

$$W^{r,p}(\mathbb{R}^N) := \{u : \mathbb{R}^N \to \mathbb{C}, \langle \xi \rangle^r \hat{u} \in L^p(\mathbb{R}^N)\}$$

$$= W^{r,p}(\mathbb{R}^N) := \{u : \mathbb{R}^N \to \mathbb{C}, \ (1 - \Delta)^{r/2} u \in L^p(\mathbb{R}^N)\}, \quad (18)$$

If $r \in \mathbb{Z}_+$,

$$W^{r,p}(\mathbb{R}^N) = \{u : \mathbb{R}^N \to \mathbb{C}, \ \partial^\alpha u \in L^p(\mathbb{R}^N), \ |\alpha| \leq r\}. \quad (18)$$
Since the dimension N is fixed throughout the paper, we will usually write $W^{r,p}$ for $W^{r,p}(\mathbb{R}^N)$. When $1 < p < \infty$, the dual of $W^{r,p}$ is the Sobolev space $W^{-r,p'}$ with $1/p + 1/p' = 1$.

We are interested in considering the initial value problem (3) in the largest-possible space of initial data f that includes the typical initial conditions that arise in applications and where uniqueness holds. We therefore introduce exponentially weighted Sobolev spaces. Given a fixed point $y \in \mathbb{R}^N$, we set
\[\langle x \rangle_w := \langle x - w \rangle = (1 + |x - w|^2)^{1/2} \]
and define $W^{m,p}_a,w(\mathbb{R}^N)$ for $m \in \mathbb{Z}^+$, $a \in \mathbb{R}$, $1 < p < \infty$, by

\[
W^{r,p}_a,w(\mathbb{R}^N) := e^{-a\langle x \rangle_w} W^{r,p}(\mathbb{R}^N)
= \{ u : \mathbb{R}^N \to \mathbb{C}, \partial^\alpha_x (e^{a\langle x \rangle_w} u(\cdot)), \in L^p(\mathbb{R}^N), |\alpha| \leq r \}, \quad \text{if } r \in \mathbb{Z}^+, \quad (19)
\]
with norm

\[
\|u\|_{W^{m,p}_a,w}^p := \|e^{a\langle x \rangle_w} u\|_{W^{m,p}}^p = \sum_{|\alpha| \leq m} \|\partial^\alpha_x (e^{a\langle x \rangle_w} u(x))\|_{L^p}^p.
\]

When it is clear from the context, we may drop the subscript w from the above notation. We observe that $W^{m,p}_0 = W^{m,p}_0,w = W^{m,p}$. The spaces $W^{r,p}_a,w$ and $W^{-r,p'}_{-a,w}$ are naturally duals to each other if $1/p + 1/p' = 1$.

A crucial observation is that, for any $L \in \mathbb{L}_\gamma$ and any $a \in \mathbb{R}$, the operators $L_a := e^{a\langle x \rangle_w} L e^{-a\langle x \rangle_w}$ are also in \mathbb{L}_γ. They moreover define a bounded family in \mathbb{L}_γ if a is in a bounded set, while w is arbitrary. Since proving a result for L acting between weighted Sobolev spaces $W^{s,p}_{a,w}$, is the same as proving the corresponding result for L_1 acting between the Sobolev spaces $W^{s,p} = W^{s,p}_{0,w}$, we may assume that $a = 0$ and w is arbitrary. In particular, $L : W^{s+2,p}_{a,w} \to W^{s,p}_{a,w}$ is well defined and continuous for any a and w, since this is true for $a = 0$.

In fact, it will be crucial for us to establish mapping properties that are independent of w. This will be the case in all estimates below, unless stated otherwise. One of the most important example is provided by Corollary III.8. Moreover, the spaces $W^{m,p}_{a,w}$ do not depend on the choice of the point y (although their norm obviously does). Because of this observation, we shall often omit the point w from the notation, when this does not affect the clarity of the presentation.

We begin by recalling some properties of L and the associated solution operator e^{tL} to the initial value problem (3).
A. Mapping properties

Given a Banach X and an interval I of the real line, we shall denote by $C(I, X)$ the space of continuous functions $u : I \to X$. By $C^k(I, X)$ we shall denote the space of functions $u \in C(I, X)$ such that $u^{(j)} \in C(I, X)$ for all $0 \leq j \leq k$. We assume that $X \subset L^1_{loc}(\mathbb{R}^N)$, and L is a closed unbounded operator on X with domain $D(L) \subset X$.

Let $g \in C([0, \infty), X)$. By a classical solution in X of (3) we mean a function

$$ u \in C([0, \infty), X) \cap C^1((0, \infty), X) \cap C((0, \infty), D(L)), $$

such that

$$ \partial_t u(t) = Lu(t) + g(t) \text{ in } X \text{ for all } t > 0 \text{ and } u(0) = f \text{ in } X. $$

(The domain of L is given the graph norm $||u|| := \|u\| + \|Lu\|$, which makes $D(L)$ a complete normed space, since we have assumed that L is closed and X is complete.) In particular, $u(0) = f$ must belong to the closure of $D(L)$ in X. In the case of interest here, if $X = W^{s,p}_a$, then $D(L) = W^{s+2,p}_a$, which is dense in X.

In view of Duhamel’s formula (which will be justified below), we can assume $g = 0$ in Equation (3). We shall take our Banach space where the solution is defined to be $X = L^p_\alpha$ for some arbitrary, but fixed, $p \in (1, \infty)$ and $\alpha \geq 0$. Then Equation (3) becomes

$$ \begin{cases}
\partial_t u(t) - Lu(t) = 0 & \text{in } L^p_\alpha(\mathbb{R}^N), \\
 u(0) = f & \text{in } L^p_\alpha(\mathbb{R}^N).
\end{cases} $$

(21)

Let us notice that if $f \in C^\infty(\mathbb{R}^N)$ also, then we recover Equation (3). The growth condition $u(t) \in L^p_\alpha$ is needed, however, in order to insure uniqueness.

A family of (bounded) linear operators $U(t)$ on X, $t \geq 0$, will be called a C^0 or strongly continuous semigroups of operators if $U(t)$ forms a semigroup in t and $U(t)u \to u$ in X as $t \to 0+$. This last property shows that the function $[0, \infty) \ni t \to U(t)f \in X$ is continuous for any $f \in X$.

We shall need the following standard result4,47,48. Recall the subset $\mathbb{L}_\gamma \subset \mathbb{L}$ introduced in Definition II.1.

Lemma II.2. (i) Let $L \in \mathbb{L}_\gamma$, then there exists a constant $C > 0$ such that

$$ \gamma(\nabla u, \nabla u) - C(u, u) \leq -(Lu, u) \leq C(\nabla u, \nabla u) + C(u, u). $$

(ii) The norm $|||v|||_{2m} := \|u\|_{L^p} + \|L^m u\|_{L^p}$ is equivalent to the norm $\cdot \|W^{2m,p} \text{ on } W^{2m,p}(\mathbb{R}^N)$, for any $m \in \mathbb{Z}_+$ and $1 < p < \infty$.

11
It follows from this lemma that $L : W^{2,p} \to L^p$ is a closed, densely defined unbounded operator on L^p. This technical fact is important because it is often needed for the general results that we will use below.

For the sake of clarity and completeness, we include here a quick review of the main properties of the semigroup generated by L. Our proofs also serve the purpose of justifying the perturbative expansion described in Section II B, which is discussed extensively in the literature, but usually not in the setting that we need. Further details can be found in49–51. Below $p \in (1, \infty)$ and $\gamma > 0$ will be arbitrary but fixed, and the constants appearing in the estimates depend on p and γ, but not on $L \in \mathbb{L}_\gamma$.

Proposition II.3. Let $a \in \mathbb{R}$, $1 < p < \infty$, and $L \in \mathbb{L}_\gamma$.

(i) For each $f \in W^{2,p}_a$, the problem (3) has a unique classical solution $u \in \mathcal{C}([0, \infty), L^p_a) \cap \mathcal{C}^1((0, \infty), W^{2,p}_a)$.

(ii) Let $e^{tL} f := u(t)$, then we have $e^{tL} W^{r,p}_a \subset W^{r,p}_a$ and, moreover, $\|e^{tL} f\|_{W^{r,p}_a} \leq C e^{\omega t} \|f\|_{W^{r,p}_a}$, for a constant C independent of r, a, and $L \in \mathbb{L}_\gamma$ in bounded sets..

Proof. The proof is standard after we reduce to $a = 0$, as explained above. \qed

From now on we shall denote by e^{tL} the \mathcal{C}^0-semigroup generated by L on $L^p_a = e^{a|x|^2} L^p(\mathbb{R}^N)$, with p and a determined by the context (usually arbitrary, but fixed).

We recall that for $f \in \mathcal{D}(L)$, the map $t \to e^{tL} f$ is in $\mathcal{C}^1([0, \infty), X)$ and $\partial_t e^{tL} f = e^{tL} L f = Le^{tL} f$. For any two normed spaces X and Y, we denote by $\mathcal{B}(X,Y)$ the normed space of continuous, linear operators $T : X \to Y$ with norm $\|T\|_{X \to Y}$. When $X = Y$, we shall also write $\|T\|_X := \|T\|_{X \to X}$ and $\mathcal{B}(X) := \mathcal{B}(X,X)$. The identity operator of any space will be denoted by 1.

Lemma II.4. Let $L \in \mathbb{L}_\gamma$. We have $\|e^{tL} - 1\|_{W^{s+2,p}_a \to W^{s,p}_a} \leq C t$, for any $t \in (0,1]$. In particular, $[0, \infty) \ni t \to e^{tL} \in \mathcal{B}(W^{s+\delta,p}_a, W^{s,p}_a)$, $\delta > 0$, is continuous.

Proof. This follows from $e^{tL} f - f = \int_0^t e^{sL} L f ds$ for any $f \in W^{2,p}_a$, using also interpolation. \qed

We discuss smoothing properties of e^{tL}, it is convenient to first assume $L^* = L$, that is that L is self-adjoint. This will require us to set $a = 0$ in our weighted Sobolev spaces $W^{s,p}_a = W^{s,p}(\mathbb{R}^N)$. This assumption will be removed later on.
Corollary II.5. Let \(t > 0 \). There exist constants \(C_{r,s} > 0 \) such that, for any \(L \in \mathbb{L}_\gamma \) with \(L = L^* \):

\[(i) \quad \| e^{tL} f \|_{W^{r,p}(\mathbb{R}^N)} \leq C_{r,s} t^{(s-r)/2} \| f \|_{W^{s,p}(\mathbb{R}^N)}, \quad r \geq s \text{ real.} \]

\[(ii) \quad \text{There exists } G_{t}^{L}(x,y) \in \mathcal{C}^\infty((0, \infty) \times \mathbb{R}^N \times \mathbb{R}^N) \text{ such that}
\begin{align*}
e^{tL} f(x) &= \int_{\mathbb{R}^N} G_{t}^{L}(x,y)f(y)dy. \tag{22}
\end{align*} \]

We now proceed to eliminate the assumption that \(L^* = L \) in the above result. First, let us notice that if \(L, L_0 \in \mathbb{L}_\gamma \), and if we denote \(V = L - L_0 \) and \(g(t, x) = Vu(x, t) \), then (3) becomes

\[
\begin{aligned}
\partial_t u - L_0 u &= g \quad \text{in } (0, \infty) \times \mathbb{R}^N, \\
u(0, x) &= f(x) \quad \text{on } \{0\} \times \mathbb{R}^N.
\end{aligned}
\tag{23}
\]

It is well-known that applying Duhamel's formula, gives a Volterra integral equation of the first kind for \(u \). If \(L = L_0^* \), the solution of the integral equation is a classical solution of (23). in fact, it is enough that \(e^{tL_0} \) generates an analytic semigroup (see \cite[Theorem 2.4, page 107]{51}). For simplicity, we want to avoid using the theory of analytic semigroups, and rather use instead Proposition II.3 and Corollary II.5.

Lemma II.6. Let us assume that \(g \in \mathcal{C}([0, \infty), L^p) \). Then the classical \(L^p \)-solution of the problem (23) is given by

\[
u(t) = e^{tL_0} f + \int_{0}^{t} e^{(t-\tau)L_0} g(\tau)d\tau. \tag{24}
\]

Assume that \(L \in \mathbb{L}_\gamma \), and let \(L_0 = (L^* + L)/2 \). Then, the classical \(L^p \)-solution \(u(t) =: e^{tL} f \) to the problem (21) is given by:

\[
e^{tL} f = e^{tL_0} f + \int_{0}^{t} e^{(t-\tau)L_0}(L - L_0)e^{\tau L} f d\tau, \tag{25}
\]

for any initial data \(f \in L^p, 1 < p < \infty \).

We now extend Corollary II.5 to non self-adjoint operators \(L \) and to the exponentially weighted spaces \(W_a^{s,p} \).
Proposition II.7. Let $L \in \mathbb{L}_\gamma$ arbitrary. We have $e^{tL}W_{a,s,p}^r \subset W_{a,r,p}^s$ for all $r, s, a \in \mathbb{R}$, $1 < p < \infty$, and $t > 0$. Let $r \geq s$, then

$$
\|u(t)\|_{W_{a,s,p}^r} \leq Ct^{(s-r)/2}\|f\|_{W_{a,r,p}^s}, \quad t \in (0, 1].
$$

The constant C above is independent of r, s, a, p, and L, as long as they belong to bounded sets.

We recall that $W_{a,s,p}^r$ is independent of the choice of the point z (see Equation (19)). The constant C in the above proposition is also independent of $z \in \mathbb{R}^N$ since the family $e^{a(x)z}Le^{-a(x)z}$ is uniformly bounded in \mathbb{L}_γ for $z \in \mathbb{R}^N$ and a in a bounded set. For this reason, we shall sometimes drop the index z from the notation $\langle x \rangle_z$.

Proof. We again may assume that $a = 0$. We concentrate on the non-trivial case $r \geq s$. Let $L_0 := (L + L^*)/2$ and $V = L - L_0$. Then $V \in \mathbb{L}$ is a differential operator of order at most one. By Lemma II.6,

$$
e^{tL} = e^{tL_0} + \int_0^t e^{(t-\tau)L_0}Ve^{\tau L}d\tau.
$$

Let us assume also that $s \leq r < s + 1$. Using also Proposition II.3, part ii, we obtain that the norm $\|e^{tL}\|_{W_{a,s,p} \rightarrow W_{a,r,p}}$ of e^{tL} as linear map $W_{a,s,p} \rightarrow W_{a,r,p}$ can be bounded as

$$
\|e^{tL}\|_{W_{a,s,p} \rightarrow W_{a,r,p}} \leq \|e^{tL_0}\|_{W_{a,s,p} \rightarrow W_{a,r,p}} + \int_0^t \|e^{(t-\tau)L_0}\|_{W_{a,s-1,p} \rightarrow W_{a,r,p}}\|V\|_{W_{a,s,p} \rightarrow W_{a,s-1,p}}\|e^{\tau L_1}\|_{W_{a,s,p}}d\tau
$$

$$
\leq C(t^{(s-r)/2} + \int_0^t (t - \tau)^{(s-1-r)/2}d\tau) = Ct^{(s-r)/2}(1 + t^{1/2}) \leq Ct^{(r-s)/2},
$$

where in the last inequality we have used that $0 < t \leq 1$, and where $C > 0$ is a generic constant, different at each appearance. The general case follows from this one as follows. Let $\delta = (r-s)/m$, for $m > r-s$. We first notice that $\|e^{tL/m}\|_{W_{a+(\delta-1)\delta,p} \rightarrow W_{a+\delta,p}} \leq C(t/m)^{(s-r)/(2m)}$ by the result that we have just proved, since $\delta < 1$. We then write $e^{tL} = (e^{tL/m})^m$ and we use the sub-multiplicative property of the norm to obtain $\|e^{tL}\|_{W_{a,s,p} \rightarrow W_{a,r,p}} \leq C(t/m)^{m(s-r)/(2m)} = Ct^{(s-r)/2}$.

In particular, Proposition II.7 gives the existence of the Green’s function $G^L_t(x, y)$ for any $L \in \mathbb{L}_\gamma$. In particular for $t > 0$, this kernel is a smooth function of x and y. We will also use the notation $G^L_t(x, y) = e^{tL}(x, y)$. The following corollary is a consequence of Proposition II.7.
Corollary II.8. Let $L \in \mathbb{L}_\gamma$ and $s, r \in \mathbb{R}$ be arbitrary. We then have that the map
\[(0, \infty) \ni t \rightarrow e^{tL} \in \mathcal{B}(W^{s,p}_a, W^{r,p}_a)\]
is infinitely many times differentiable.

See52–54 for more continuity properties of the semigroups generated by second order differential operators (Schrödinger semigroups).

B. Perturbative expansion

The purpose of this section is to obtain a time-ordered perturbative expansion of e^{tL}, $L \in \mathbb{L}_\gamma$, in terms of e^{tL_0} for a fixed element $L_0 \in \mathbb{L}_\gamma$. Later, L_0 will be obtained by freezing the highest-order coefficients of L at a given point z and dropping the lower-order terms. This expansion is the well-known Dyson series50,55,56. Here, we concentrate on justifying this expansion in our setting and in obtaining global error estimates in weighted Sobolev spaces.

For each $k \in \mathbb{Z}_+$, we denote by
\[
\Sigma_k := \{ \tau = (\tau_0, \tau_1, \ldots, \tau_k) \in \mathbb{R}^{k+1}, \tau_j \geq 0, \sum \tau_j = 1 \}
\approx \{ \sigma = (\sigma_1, \ldots, \sigma_k) \in \mathbb{R}^k, 1 \geq \sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_{k-1} \geq \sigma_k \geq 0 \}
\]
the standard unit simplex of dimension k. The identification above is given by $\sigma_j = \tau_j + \tau_{j+1} + \ldots + \tau_k$. Using this bijection, for any operator-valued function f of \mathbb{R}^N we can write
\[
\int_{\Sigma_k} f(\tau) d\tau = \int_0^1 \int_0^{\sigma_1} \int_0^{\sigma_2} \ldots \int_0^{\sigma_{k-1}} f(1 - \sigma_1, \sigma_1 - \sigma_2, \ldots, \sigma_{k-1} - \sigma_k, \sigma_k) d\sigma_k \ldots d\sigma_1
\]
\[
= \int_{\Sigma_k} f(1 - \sigma_1, \sigma_1 - \sigma_2, \ldots, \sigma_{k-1} - \sigma_k) d\sigma
\]

We recall that, if $g : [a, b] \rightarrow X$ is a continuous function to a Banach space X, $\int_a^b g(t) dt$ is defined as a Riemann integral. We begin with a preliminary lemma. We further recall that $\mathcal{B}(X, Y)$ the Banach space of continuous, linear maps between two Banach spaces X and Y.

Lemma II.9. Let $L_j \in \mathbb{L}_\gamma$ and let V_j be such that $e^{-b_j(x)}V_j \in \mathbb{L}$, $j = 1, \ldots, k$, for some $b = (b_1, \ldots, b_k) \in \mathbb{R}^k_+$, $k \in \mathbb{Z}_+$. Then
\[
\Phi(\tau) = e^{\tau_0 L_0} V_1 e^{\tau_1 L_1} \ldots e^{\tau_{k-1} L_{k-1}} V_k e^{\tau_k L_k}, \quad \tau \in \Sigma_k
\]
defines a continuous function $\Phi : \Sigma_k \rightarrow \mathcal{B}(W^{s,p}_a(\mathbb{R}^N), W^{r,p}_a(\mathbb{R}^N))$ for any $a \in \mathbb{R}$ and $1 < p < \infty$. 15
Above we use the standard multi index notation $|b| = \sum_{j=1}^{k} b_j$.

Proof. It is enough to prove that Φ is continuous on each of the sets $V_j := \{\tau_j > 1/(k + 2)\}$, $j = 0, \ldots, k$, since they cover Σ_k. Let us assume that $j = 0$, for the simplicity of notation.

By assumption and by Lemma II.4, each of the functions

$$[0, \infty) \ni \tau_j \mapsto V_j e^{\tau_j L_j} \in B(W_{c_j}^{r_j+4p}, W_{c_j-b_j}^{r_j,p}), \quad 1 \leq j \leq k,$$

is continuous. For a suitable choice of c_j and r_j (more precisely, $c_j = c_{j+1} - b_{j+1}$, $c_k = a$, $r_j = r_{j+1} - 4$, $r_k = s$), we obtain that the map

$$[0, \infty)^k \ni (\tau_j) =: \tau' \mapsto \Psi(\tau') := V_1 e^{\tau_1 L_1} ... V_k e^{\tau_k L_k} \in B(W_{a}^{s,p}, W_{a-|b|}^{s-4k,p})$$

is continuous. Corollary II.8 gives that the map $\tau_0 \mapsto e^{\tau_0 L_0} \in B(W_{a-|b|}^{s-4k,p}, W_{a-|b|}^{r,p})$ is continuous for $\tau_0 \geq 1/(k + 2)$. This proves the continuity of Φ on V_0 and completes the proof of the lemma.

By iterating Duhamel’s formula in Lemma II.6, we obtain the following well-known time-ordered expansion of e^{tL}.

Proposition II.10. Let $d \in \mathbb{Z}_+$. Then, for each $L, L_0 \in \mathbb{L}_\gamma$,

$$e^{tL} = e^{tL_0} + t \int_{\Sigma_1} e^{t\tau_0 L_0} V e^{\tau_1 L_0} d\tau + t^2 \int_{\Sigma_2} e^{t\tau_0 L_0} V e^{\tau_1 L_0} V e^{t\tau_2 L_0} d\tau + \cdots + t^d \int_{\Sigma_d} e^{t\tau_0 L_0} V e^{\tau_1 L_0} ... e^{t\tau_{d-1} L_0} V e^{t\tau_d L_0} d\tau + t^{d+1} \int_{\Sigma_{d+1}} e^{t\tau_0 L_0} V e^{\tau_1 L_0} ... e^{t\tau_{d} L_0} V e^{t\tau_{d+1} L} d\tau,$$

where $V = L - L_0$, and each integral is a well-defined Riemann integral of a Banach valued function.

The positive integer d will be called the *iteration level* of the approximation. As $d \to \infty$, formula (26) above gives rise to an asymptotic series (*Dyson series*, see 50, 55, 56 and the references therein).

Later in the paper, V will be replaced by a Taylor approximation of L, so that V will have polynomial coefficients in x, so we have included this case in the lemma above.
III. LOCAL DILATIONS AND PERTURBATIVE EXPANSIONS

In this section, we tackle the task of deriving an algorithmically computable approximation to e^{tL}. We exploit the perturbative expansion (26) with L_0 the operator obtained by freezing the highest-order coefficients of L at a given, but arbitrary, point $z \in \mathbb{R}^N$, and dropping the lower-order terms (see (36a) below). Then, we approximate $L - L_0$ by an appropriate Taylor expansion, so that each of the terms in (26) except the last one can be explicitly computed using commutator formulas, as discussed in Section IV. Recall that the sets of second order differential operators $\mathbb{L}_{\gamma} \subset \mathbb{L}$ were introduced in Definition II.1.

First, using a suitable rescaling in space and time, we replace the problem of determining an asymptotic expansion of the kernel $G_t^L(x, y) := e^{tL}(x, y)$ of e^{tL} by the problem of determining an asymptotic expansion of the kernel $G_t^{L_{s,z}}(x, y) = e^{L_{s,z}}(x, y)$ for a suitable family of operators $L_{s,z}$ parameterized by $s = \sqrt{t}$, and by the point $z \in \mathbb{R}^N$. The point z is fixed throughout this section, but it will be allowed to vary later on as a function of x and y satisfying some conditions, for example $z = (x + y)/2$. For some results, we will set $z = x$. The family $L_{s,z}$ has limit precisely L_0 as $s \to 0$. Since we will let z vary later, we shall sometimes write $L_0 = L_0^z$.

For any $s > 0$, we consider the action on functions of dilating x by s about z and t by s^2 about 0. If $f : \mathbb{R}^N \to \mathbb{R}$, $u : [0, \infty) \times \mathbb{R}^N \to \mathbb{R}$, we then set

$$f_{s,z}^s(x) := f(z + s(x - z)), \quad u_{s,z}^s(t, x) := u(s^2 t, z + s(x - z)),$$

and,

$$L_{s,z}^s := \sum_{i,j=1}^N a_{ij}^{s,z}(x) \partial_i \partial_j + s \sum_{i=1}^N b_i^{s,z}(x) \partial_i + s^2 c^{s,z}(x). \quad (29)$$

We immediately see that

$$L_{s,z}^s u_{s,z}^s = s^2 (Lu)^{s,z}, \quad (\partial_t - L_{s,z}^s) u_{s,z}^s = s^2 [(\partial_t - L) u]^{s,z} \quad (30)$$

In particular, we have the following simple lemma, which we record for further reference.
Lemma III.1. If u solves (23), then $u^{s,z}$ solves
\[
\begin{align*}
\partial_t u^{s,z} - L^{s,z} u^{s,z} &= 0 \quad \text{in } (0, \infty) \times \mathbb{R}^N, \\
u^{s,z} &= f^{s,z} \in C_c^\infty(\mathbb{R}^N) \quad \text{on } \{0\} \times \mathbb{R}^N.
\end{align*}
\tag{31}
\]

We want to study the Initial Value Problem (31) and the Green’s function of its associated solution operator $e^{tL^{s,z}}$. We can reduce to study the special case $z = 0$.

A simple calculation gives the following lemma.

Lemma III.2. Assume $L \in \mathbb{L}$ and let z be a fixed, but arbitrary, point in \mathbb{R}^N. Then, for any $s > 0$,
\[
G_t^L(x, y) = s^{-N}G_t^{L_z}(z + s^{-1}(x - z), z + s^{-1}(y - z))
= t^{-\frac{N}{2}}G_t^{L_z^\sqrt{t}}(z + t^{-\frac{1}{2}}(x - z), z + t^{-\frac{1}{2}}(y - z)), \text{ if } s = t^{-\frac{1}{2}}.
\]

A. Perturbative expansion of $e^{L^{s,z}}$

Since Lemma III.2 gives us an immediate procedure for obtaining the Green function $G_t^L(x, y)$ of $\partial_t - L$ from the Green’s function $G_t^{L^{s,z}}(x, y)$ of $\partial_t - L^{s,z}$, we now concentrate on obtaining a perturbative expansion for the latter.

Recall that $L_z^z = L_0^{0,z} = \lim_{s \to 0} L^{s,z}$. Let us write $V_1^{s,z} := L^{s,z} - L_0^z$. Then, $V_1^{s,z}$ takes the role of V in the perturbative expansion (26) for the operator $e^{L^{s,z}}$, that is:
\[
e^{L^{s,z}} = e^{L_0^z} + \int_{\Sigma_1} e^{\tau_0 L_0^z} V_1^{s,z} e^{\tau_1 L_0^z} d\tau + \int_{\Sigma_2} e^{\tau_0 L_0^z} V_1^{s,z} e^{\tau_1 L_0^z} V_1^{s,z} e^{\tau_2 L_0^z} d\tau + \cdots + \int_{\Sigma_d} e^{\tau_0 L_0^z} V_1^{s,z} e^{\tau_1 L_0^z} \cdots e^{\tau_{d-1} L_0^z} V_1^{s,z} e^{\tau_d L_0^z} d\tau \\
+ \sum_{d+1} e^{\tau_0 L_0^z} V_1^{s,z} e^{\tau_1 L_0^z} \cdots e^{\tau_{d-1} L_0^z} V_1^{s,z} e^{\tau_d L_0^z} d\tau.
\tag{32}
\]

In a sense to be made precise below, we have $V_1^s = \mathcal{O}(s)$. Consequently, if we let the iteration level $d \to \infty$ in (26), we obtain a formal power series in s. We will rigorously show in Section V using the exponentially weighted Sobolev spaces $W_{s,p}^a$ that (26) indeed gives rises to an asymptotically convergent series in s as $s \to 0$ and will derive global error bounds in $W_{s,p}$ and $W_{s,p}^a$ for the partial sums.

Let $n \in \mathbb{Z}_+$ be a fixed integer and consider the Taylor expansion of the operator $L^{s,z}$ up to order n in s around $s = 0$,
\[
L^{s,z} = \sum_{m=0}^n s^m L_m z + V_{n+1}^{s,z}
\tag{33}
\]
were \(V_{n+1}^{s,z} \) is the remainder term in the expansion. Let

\[
V_{n+1}^{s,z} = s^{n+1} L_{n+1}^{s,z}.
\]

The operators \(L_{m}^{s,z} \), \(1 \leq m \leq n \), are given by

\[
L_{m}^{s,z} := \frac{1}{m!} \left(\frac{d^m}{ds^m} L^{s,z} \right) \bigg|_{s=0},
\]

and are independent of \(s \), while

\[
L_{n+1}^{s,z} := \frac{1}{(n+1)!} \left(\frac{d^{n+1}}{d\theta^{n+1}} L^{0,z} \right) \bigg|_{\theta=\alpha s},
\]

for some \(0 < \alpha < 1 \), and hence it still depends on \(s \).

Remark III.3. From the form of \(L^{s,z} \) in Equation (29) it follows that the operator \(L_{m}^{s} \), \(m \leq n \), (respectively \(L_{n+1}^{s,z} \)) has coefficients that are *polynomials in \(x-z \) of degree at most \(m \) (respectively of degree \(n+1 \)). The coefficients of the polynomials themselves are bounded functions of \(z \). More precisely, the coefficients of the second order derivative terms are of degree at most \(m \) in \(x-z \), while the coefficients of the first order derivatives term are of degree at most \(m-1 \) in \(x-z \), and the coefficients of the zero order derivative term is of degree at most \(m-2 \) in \(x-z \). The coefficients of these polynomials in \(x-z \) are *bounded* functions of \(z \), together will all their derivatives, a fact that will be exploited later.

The first few terms of the Taylor expansions are explicitly:

\[
L_{0}^{z} = \sum_{i,j=1}^{N} a_{ij}(z) \partial_i \partial_j,
\]

\[
L_{1}^{z} = \sum_{i,j=1}^{N} ((x-z) \cdot \nabla a_{ij}(z)) \partial_i \partial_j + \sum_{i=1}^{N} b_i(z) \partial_i,
\]

\[
L_{2}^{z} = \sum_{i,j=1}^{N} \frac{1}{2} ((x-z)^T \nabla^2 a_{ij}(z) (x-z)) \partial_i \partial_j + \sum_{i=1}^{N} ((x-z) \cdot \nabla b_i(z)) \partial_i + c(z).
\]

Since \(L_{0}^{z} \) has coefficients that are constant in \(x \), we can explicitly compute the Green’s function

\[
e^{L_{0}^{z}} = \frac{1}{\sqrt{(4\pi t)^N \det A^0}} e^{(x-y)^T (A^0)^{-1} (x-y)} ,
\]

\[19\]
where $A^0 := A(z)$.

Furthermore $V_1^s := L^{s,z} - L_0^z$ can be written as

$$V_1^s := \sum_{m=0}^{n} s^m L_m^z + s^{n+1} L_{n+1}^{s,z}. \quad (38)$$

This Taylor polynomial expansion can then be substituted into (32), yielding another polynomial in s. To describe each term of this polynomial and to formulate the main results in this section, we need to introduce some notation. Let $\mathbb{N} := \{1, 2, 3, \ldots\}$ denote the set of natural numbers (always assumed to be > 0).

Definition III.4. For any integers $1 \leq k \leq d + 1$ and ℓ, we shall denote by $\mathfrak{A}_{k,\ell}$ the set of multi-indexes $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_k) \in \mathbb{N}^k$, such that $|\alpha| := \sum \alpha_j = \ell$. Furthermore, we denote $\mathfrak{A}_\ell := \bigcup_{k=1}^\ell \mathfrak{A}_{k,\ell}$. For symmetry, it will be convenient to set $\mathfrak{A}_{k,\ell} \equiv \emptyset$, if $\ell < k$, including when $\ell \leq 0$.

We note that, since $\alpha_i \geq 1$, the set $\mathfrak{A}_{k,\ell}$ is empty if $\ell < k$, and \mathfrak{A}_ℓ contains $2^{\ell-1}$ elements. The meaning of ℓ is that of the corresponding power of s and the meaning of k is that of the iteration level in the Dyson series (32).

We are now in the position to describe the expansion (32) more explicitly. We recall that d is the iteration level of the approximation and n is the order of the Taylor expansion. In the following definition, by abuse of notation, it will be convenient to write L_{n+1}^z instead of $L_{n+1}^{s,z}$, that is, we shall omit s from the notation. We also recall that $\mathfrak{A}_{k,\ell} \equiv \emptyset$, if $\ell < k$. This condition will be understood.

Definition III.5. For each multi-index $\alpha = (\alpha_1, \ldots, \alpha_k) \in \mathfrak{A}_{k,\ell}$, we let

$$\Lambda_{\alpha,z} := \int_{\Sigma_k} e^{\gamma_0 L_0^z} L_{\alpha_1}^z e^{\gamma_1 L_0^z} L_{\alpha_2}^z \cdots L_{\alpha_k}^z e^{\gamma_k L_0^z} d\tau, \quad (39)$$

if $1 \leq k \leq d$, and

$$\Lambda_{\alpha,z} := \int_{\Sigma_{d+1}} e^{\gamma_0 L_0^z} L_{\alpha_1}^z e^{\gamma_1 L_0^z} L_{\alpha_2}^z \cdots L_{\alpha_{d+1}}^z e^{\gamma_{d+1} L_{d+1}^{s,z}} d\tau. \quad (40)$$

if $k = d + 1$. Then, we set

$$\Lambda_\ell := \sum_{\alpha \in \mathfrak{A}_\ell} \Lambda_{\alpha,z}, \quad (41)$$

with the convention that $\Lambda_0^z = e^{L_0^z}$.

20
We observe that α uniquely determines k and ℓ, so that our notation is justified. Let $\alpha = (\alpha_j) \in \mathcal{A}_{k,\ell}$. We remark that if $k = n + 1$ or some $\alpha_j = n + 1$ (in which case $L^z_{\alpha_j}$ stands in fact for L_{n+1}^z), then $\Lambda_{\alpha,z}$ and Λ^ℓ_z depend on s, so we shall sometimes denote these terms by $\Lambda_{\alpha,s,z}$ and $\Lambda^\ell_{s,z}$.

Also, in what follows, when no confusion can arise, we will drop the explicit dependence on z. However, in Section V, z will be allowed to vary and we will reinstate the full notation. We also observe that each Λ^ℓ_z or $\Lambda^\ell_{s,z}$ is well defined as a Riemann integral by Lemma II.9 and by the following lemmas. Let us recall that $\langle x \rangle^w = (1 + |x - w|^2)^{1/2}$.

Lemma III.6. The family

$$\{\langle x \rangle^z_j L^z_j; \ s \in (0, 1], \ z \in \mathbb{R}^N, \ j = 0, \ldots, n + 1\}$$

defines a bounded subset of \mathbb{L}.

Proof. This is an immediate consequence of Remark III.3 if $j \leq n$ and of directly estimating the remainder in the Taylor series for $j = n + 1$. \hfill \Box

In the following Lemma, we shall use an arbitrary center for our weight.

Lemma III.7. For each given $\epsilon > 0$, the family

$$\{e^{-\epsilon(z-w)}e^{-\epsilon(x)_w}L^z_j; \ s \in (0, 1], \ z \in \mathbb{R}^N, \ j = 0, \ldots, n + 1\}$$

is a bounded subset of \mathbb{L}.

Proof. Let us assume first that $w = z$. We need to prove that the family

$$\{e^{-\epsilon(x)_z}L^z_j; \ s \in (0, 1], \ z \in \mathbb{R}^N, \ j = 0, \ldots, n + 1\}$$

is bounded in \mathbb{L}. Indeed, this follows from Lemma III.6 and the simple observation that $\langle x \rangle^z_j e^{-\epsilon(x)_z} \leq C$, with C independent of z and j.

To obtain the statement of the theorem, we then apply the triangle inequality to the vectors $(0, x), (1, z), (1, w) \in \mathbb{R}^{1+N}$ to conclude that $\langle x - z \rangle - \langle x - w \rangle \leq |z - w| \leq \langle z - w \rangle$. This shows that $e^{\epsilon(\langle x - z \rangle - \langle x - w \rangle - \langle z - w \rangle)} \leq 1$. Hence the family

$$\{e^{\epsilon(\langle x - z \rangle - \langle x - w \rangle - \langle z - w \rangle)}L^z_j = e^{-\epsilon(z-w)}e^{-\epsilon(x)_w}L^z_j; \ s \in (0, 1], \ z \in \mathbb{R}^N, \ j = 0, \ldots, n + 1\}$$

is bounded in \mathbb{L}, as claimed. \hfill \Box
Lemma II.9 together with Lemma III.7 then give the following result.

Corollary III.8. We have $\Lambda_{\alpha,z} \in \mathcal{B}(W_s^p, W_r^p)$, for any $\alpha \in \mathfrak{A}_{k,\ell}$, $z \in \mathbb{R}^N$, $r,s \in \mathbb{R}$, $1 < p < \infty$, and $\epsilon > 0$. Moreover, we have that

$$\|\Lambda_{\alpha,z}\|_{W_s^p \to W_r^p} \leq C_{q,r,p,a,\epsilon} e^{k\epsilon (z-w)},$$

for a constant $C_{q,r,p,a,\epsilon}$ that does not depend on z. In particular, each $\Lambda_{\alpha,z}$ is an operator with smooth kernel $\Lambda_{\alpha,z}(x,y)$.

Therefore, we can write

$$\Lambda_{\alpha,z}f(x) = \int_{\mathbb{R}^N} \Lambda_{\alpha,z}(x,y)f(y)dy. \quad (42)$$

The point of the above definition and results is to rewrite the perturbative expansion (partial Dyson series) in the form

Lemma III.9. Denote $M = (d+1)(n+1)$. We have

$$e^{L_{s,z}} = e^{L_{0}} + \sum_{\ell=1}^{M} \sum_{k=1}^{\min(\ell,d+1)} s^\ell \Lambda_{\alpha,z} = \sum_{\ell=0}^{M} s^\ell \Lambda_{z}^\ell.$$

We now assume that $n \leq d$ and write the perturbative expansion of the above Lemma as follows:

$$e^{L_{s,z}} = e^{L_{0}} + \sum_{\ell=1}^{n} s^\ell \Lambda_{z}^\ell + \sum_{\ell=n+1}^{M} s^\ell \Lambda_{z}^\ell = e^{L_{0}} + \sum_{\ell=1}^{n} s^\ell \Lambda_{z}^\ell + \sum_{\ell=0}^{n} s^\ell \Lambda_{z}^\ell + s^{n+1}E_{d,n}, \quad (43)$$

where $E_{d,n}^{s,z}$ represents the error in the approximation and depends on s, whereas the terms Λ_{z}^ℓ, $1 \leq \ell \leq n$ do not depend on s or d, since we have assumed that $n \leq d$. Since $E_{d,n}^{s,z}$ is independent of d for $d \geq n$, we shall eventually restrict to $d = n$.

IV. COMMUTATOR CALCULATIONS

The purpose of this section is to give an explicitly computable representation of the perturbative expansion (43) as

$$e^{L_{s,z}} \sim e^{L_{0}} + \sum_{\ell=1}^{n} s^\ell \mathcal{P}(x,z,\partial)e^{L_{0}}$$

22
where \(P^j(x, z, \partial) \) is a differential operator with smooth coefficients that depend polynomially on \(x - z \) and \(s \), and are bounded with all derivatives in \(z \). Both the order of the operator as well as the degree of the polynomial coefficients depend on the order of the Taylor expansion \(n \), which also equals the iteration level \(d \). We give an explicit characterization of \(P_n \) and an iterative procedure to calculate it in Theorem IV.7. The main idea is to show that each \(\Lambda_{\alpha,z} \) in (39) can be written as an explicitly computable differential operator \(P_\alpha \) acting on the distribution kernel of \(e^{L_z \partial} \), and thus using (41) show that the perturbative expansion (43) can be rewritten in this form as well. Throughout this section, \(z \) is kept fixed, though arbitrary, and \(\partial \) will always mean differentiation with respect to \(x \).

Definition IV.1 (Spaces of Differential Operators). For any nonnegative integers \(a, b \) we denote by \(D(a, b) \) the vector space of all differentiations of polynomial degree at most \(a \) and order at most \(b \). We extend this definition to negative indices by defining \(D(a, b) = \{0\} \) if either \(a \) or \(b \) is negative. By polynomial degree of \(A \) we mean the highest power of the polynomials appearing as coefficients in \(A \).

We remark that \(D(0, b) \) consists of differential operators with constant coefficients.

Definition IV.2 (Adjoint Representation). For any two differentiations \(A_1 \in D(a_1, b_1) \) and \(A_2 \in D(a_2, b_2) \) we define \(\text{ad}_{A_1}(A_2) \) by

\[
\text{ad}_{A_1}(A_2) := [A_1, A_2] = A_1A_2 - A_2A_1,
\]

as usual, and for any integer \(j \geq 1 \) we define \(\text{ad}_{A_1}^j(A_2) \) recursively by

\[
\text{ad}_{A_1}^j(A_2) := \text{ad}_{A_1}(\text{ad}_{A_1}^{j-1}(A_2))
\]

Proposition IV.3. Suppose \(A_1 \in D(a_1, b_1) \) and \(A_2 \in D(a_2, b_2) \). Then for any integer \(k \geq 1 \), \(\text{ad}_{A_1}^k(A_2) \in D(k(a_1 - 1) + a_2, k(b_1 - 1) + b_2) \).

Proof. We first notice that

\[
\text{ad}_{A_1}(A_2) \in D(a_1 - 1 + a_2, b_1 - 1 + b_2).
\]

Next, from (45) we have

\[
\text{ad}_{A_1}^k(A_2) = \text{ad}_{A_1}(\text{ad}_{A_1}(\text{ad}_{A_1}(\ldots))))), \quad k - \text{times},
\]

so that an application of (46) \(k \) times yields the result.
Lemma IV.4. Let \(m, k \) be fixed integers \(\geq 1 \). Let \(L_0 \in D(0, 2) \) and \(L_m \in D(m, 2) \). Then, \(\text{ad}^k_{L_0}(L_m) \in D(m - k, k + 2) \). In particular,

\[
\text{ad}^k_{L_0}(L_m) = 0, \quad \text{if } k > m. \tag{48}
\]

Proof. Applying Lemma IV.4 we see that \(\text{ad}^k_{L_0}(L_m^z) \in D(m - k, k + 2) \). If \(k > m \), then by definition \(D(m - k, k + 2) = \{0\} \) and we obtain (48).

Lemma IV.5. Let \(L_0 \in D(0, 2) \cap L_\gamma \), and let \(L_m \in D(m, 2) \). Then for any \(\theta > 0 \),

\[
e^{\theta L_0} L_m = P_m(L_0, L_m; \theta, x, \partial)e^{\theta L_0},
\]

where \(P_m(\theta) = P_m(L_0, L_m; \theta, x, \partial) \in D(m, m + 2) \) is given by

\[
P_m(\theta) := \sum_{k=0}^{m} \frac{\theta^k}{k!} \text{ad}^k_{L_0}(L_m) = L_m + \theta[L_0, L_m] + \frac{\theta^2}{2}[L_0, [L_0, L_m]] + \cdots .
\]

Proof. We recall the Baker-Campbell-Hausdorff formula (see for instance\(^57\))

\[
\Phi(t) := e^{tA}B - \left(\sum_{k=0}^{\infty} t^k \frac{\text{ad}^k_A(B)}{k!} \right) e^{tA} = 0. \tag{49}
\]

In general, this formula is a formal infinite series, and the equality \(\Phi(t) = 0 \) must be justified.

Setting \(A = L_0, B = L_m \), we have that \(\text{ad}^{m+1}_A(B) = 0 \), by Lemma IV.4, so the sum becomes finite, and the function \(\Phi(t) \) is well defined as a bounded operator \(W_1^{m,p} \to L^p \).

Since \(\Phi(0) = 0 \), to prove that \(\Phi(t) = 0 \) for all \(t \), it is enough to show that \(\partial_t \Phi(t)f = 0 \) for all \(f \in W_1^{m,p} \). Indeed, we have

\[
\partial_t \Phi(t)f = e^{tA}ABf - \left(\sum_{k=0}^{\infty} kt^{k-1} \frac{\text{ad}^k_A(B)}{k!} \right) e^{tA}f
\]

\[
- \left(\sum_{k=0}^{\infty} t^k \frac{\text{ad}^k_A(B)}{k!} \right) A e^{tA}f = e^{tA}ABf - \left(\sum_{k=0}^{\infty} t^k \frac{\text{ad}^{k+1}_A(B)}{k!} \right) e^{tA}f
\]

\[
- \left(\sum_{k=0}^{\infty} t^k \frac{\text{ad}^k_A(BA)}{k!} \right) e^{tA}f = e^{tA}ABf - \left(\sum_{k=0}^{\infty} t^k \frac{\text{ad}^k_A(AB)}{k!} \right) e^{tA}f
\]

\[
= Ae^{tA}Bf - A \left(\sum_{k=0}^{\infty} t^k \frac{\text{ad}^k_A(B)}{k!} \right) e^{tA}f = A\Phi(t)f.
\]

So the continuous function \(u(t) := \Phi(t)f \in L^p \) satisfies the equation \(\partial_t u(t) - Au(t) = 0 \) with initial condition \(u(0) = 0 \). By the uniqueness of the solutions of this equation in \(L^p \), we obtain that \(u(t) = 0 \), which is the desired Baker-Campbell-Hausdorff formula.
The indicated properties of $P_m(\theta) = P_m(L_0, L_m; \theta, x, \partial)$ are obtained directly from Lemma IV.4, as follows. We have $\text{ad}^k_A(B) \in \mathcal{D}(m - k, k + 2)$ and hence

$$P_m(\theta) := \sum_{k=0}^{m} \frac{\theta^k}{k!} \text{ad}^k_A(B) \in \sum_{k=0}^{m} \mathcal{D}(m - k, k + 2) \subset \mathcal{D}(m, m + 2).$$

This completes the proof. \hfill \Box

Lemma IV.6. For a given multi-index $\alpha \in \mathfrak{A}_{k,\ell}$ with $k \leq d = n$, let

$$P_\alpha(x, z, \partial) := \int_{\Sigma_k} \prod_{i=1}^{k} P_{\alpha_i}(L_{\sigma_0}^z, L_{\sigma_i}^z; 1 - \sigma_i, x, \partial) d\sigma,$$

where $P_{\alpha_i}(L_{\sigma_0}^z, L_{\sigma_i}^z; 1 - \sigma_i, x, \partial)$ is defined in Lemma IV.5. Then

$$\Lambda_{\alpha,z} = P_\alpha(x, z, \partial) e^{L_0^z}$$

where the product is the composition of operators and P_α is a differential operator of order $2k + \ell$ and polynomial degree $\leq \ell = |\alpha| = \sum_{i=1}^{k} \alpha_i$. More precisely, we can write

$$P_\alpha(x, z, \partial) = \sum_{|\beta| \leq \ell} \sum_{|\gamma| \leq \ell + 2k} a_{\beta,\gamma}(z)(x-z)^{\beta} \partial_{x}^{\gamma}, \quad (50)$$

with $a_{\beta,\gamma} \in C^\infty_0(\mathbb{R}^N)$ and β and γ multi-indices.

Proof. The proof is a calculation based on the repeated application of Lemma IV.5 on $\Lambda_{\alpha,z}^{k,\ell}$. We fix $\alpha \in \mathfrak{A}_{k,\ell}$, and for simplicity we continue to denote $P_m(\theta) = P_m(L_0^z, L_m^z; \theta, x, \partial)$, when no confusion can arise. Then,

$$\Lambda_{\alpha,z} = \int_{\Sigma_k} e^{(1-\sigma_1)L_0^z} L_{\alpha_1} e^{(\sigma_1-\sigma_2)L_0^z} L_{\alpha_2} e^{(\sigma_2-\sigma_3)L_0^z} \ldots L_{\alpha_k} e^{\sigma_k L_0^z} d\sigma$$

$$= \int_{\Sigma_k} P_{\alpha_1}(1 - \sigma_1) e^{(1-\sigma_2)L_0^z} L_{\alpha_2} e^{(\sigma_2-\sigma_3)L_0^z} \ldots L_{\alpha_k} e^{\sigma_k L_0^z} d\sigma \ldots =$$

$$= \int_{\Sigma_k} \prod_{i=1}^{k} P_{\alpha_i}(1 - \sigma_i) e^{L_0^z} d\sigma = \left(\int_{\Sigma_k} \prod_{i=1}^{k} P_{\alpha_i}(1 - \sigma_i) d\sigma \right) e^{L_0^z}.$$

The proof is complete. \hfill \Box

Finally, for $\ell \leq n$ we set

$$P^\ell(x, z, \partial) := \sum_{\alpha \in \mathfrak{A}_{\ell}} P_\alpha(x, z, \partial) = \sum_{k=1}^{\ell} \sum_{\alpha \in \mathfrak{A}_{k,\ell}} \int_{\Sigma_k} \prod_{i=1}^{k} P_{\alpha_i}(1 - \sigma_i) d\sigma,$$

25
so that
\[\Lambda_\ell = \sum_{k=1}^{\ell} \sum_{\alpha \in \mathcal{A}_{k,\ell}} \Lambda_{\alpha, z} = \sum_{k=1}^{\ell} \sum_{\alpha \in \mathcal{A}_{k,\ell}} P_\alpha(x, z, \partial) e^{L_\ell^0} \]
\[= \sum_{k=1}^{\ell} \sum_{\alpha \in \mathcal{A}_{k,\ell}} \int_{\Sigma_k} \prod_{i=1}^k P_{\alpha_i}(L_{0_i}^z, L_{\alpha_i}^z, 1 - \sigma_i, x, \partial) d\sigma e^{L_\ell^0} = \mathcal{P}_\ell(x, z, \partial) e^{L_0^z}. \]

A similar, but more complicated, representation holds also for \(\Lambda_{\alpha, z} \) and for multi-indices \(\alpha \in \mathcal{A}_{n+1, \ell} \). Indeed,
\[\Lambda_{\alpha, z} = \int_{\Sigma_{n+1}} P_{\alpha_1}(1 - \sigma_1) \cdots P_{\alpha_k}(1 - \sigma_{n+1}) e^{(1 - \sigma_{n+1}) L_{0_{n+1}}^z} e^{\sigma_{n+1} L_{\alpha, z}} d\sigma. \] (51)

We are now in the position to state the main result of this section. Below, we set \(P_0 = 1 \).

Let us recall the error term
\[E_{s,z}^{n,n} := \sum_{\ell=n+1}^{(n+1)^2} s^{\ell-n-1} \Lambda_\ell = \sum_{\ell=n+1}^{(n+1)^2} \sum_{k=1}^{n+1} \sum_{\alpha \in \mathcal{A}_{k,\ell}} s^{\ell-n-1} \Lambda_{\alpha, z} \] introduced in Equation (43). (There, we introduced \(E_{d,n} \), but such error term is independent of \(d \), as long \(d \geq n \), hence we can always assume that \(d = n \).)

Theorem IV.7. The perturbative expansion (43) of \(e^{L_{s,z}} \) can be written in the form

\[e^{L_{s,z}} = e^{L_0^z} + \sum_{\ell=1}^{n} s^\ell \mathcal{P}_\ell(x, z, \partial)e^{L_0^z} + s^{n+1}E_{s,z}^{n,n}, \]

where the differential operators \(\mathcal{P}_\ell \) are explicitly given by Lemmas IV.5 and IV.6.

Proof. Starting with (43), we have
\[e^{L_{s,z}} = e^{L_0^z} + \sum_{\ell=1}^{n} \sum_{k=1}^{\ell} s^\ell \Lambda_{\alpha, z} + s^{n+1}E_{s,z}^{n,n} \]
\[= \sum_{\ell=0}^{n} s^\ell \Lambda_\ell + s^{n+1}E_{s,z}^{n,n} = e^{L_0^z} + \sum_{\ell=1}^{n} s^\ell \mathcal{P}_\ell(x, z, \partial)e^{L_0^z} + s^{n+1}E_{s,z}^{n,n}. \]

This completes the proof. \(\square \)

Recall that \(e^{L_0^z}(x, y) \) is explicit given in Equation (37), since \(z \) is arbitrary, but fixed, and it agrees with the function \(G^0(z; x, y) \) defined by Equation (6) in the Introduction.
Corollary IV.8. If $|\alpha| = \ell \leq n$, then the kernel of each operator $\Lambda_{\alpha, z}$ appearing in the perturbative expansion (43) is explicitly given by:

$$\mathcal{P}^\ell(z, x, y)G(z; x, y),$$

where the function \mathcal{P}^ℓ are of the form

$$\mathcal{P}^\ell(z, x, y) = \sum a_{\alpha, \beta}(z)(x - z)^{\alpha}(x - y)^{\beta},$$

with $|\alpha| \leq \ell$, $\beta \leq 3\ell$, $a_{\alpha, \beta} \in C^\infty_b(\mathbb{R}^N)$.

Proof. We observe that e^{Lt^z} is a convolution operator, since z is fixed, therefore

$$(P_\alpha(x, z, \partial)e^{Lt^z})(x, y) = P_\alpha(x, z, \partial)(e^{Lt^z}(x, y)).$$

Then, the result follows from formula (6) for $e^{Lt^z}(x, y)$, formula (50) for $P_\alpha(x, z, \partial)$, and the fact that P_ℓ is a sum of such operators as α varies over \mathfrak{A}_ℓ. (See also Lemma V.1 in the next section, Section V.)

The method introduced in this and the previous sections to approximate the heat kernel of L will be called the Dyson-Taylor commutator method. Its description is now complete.

V. ERROR ESTIMATES

In this final section, we prove all the bounds necessary to justify the error estimate in the asymptotic expansion of Theorem I.1. Throughout this section, n will denote the order in the Taylor expansion of the coefficients of L, which may differ from the approximation order as defined in Equation (43). Such approximation order will be denoted by μ, as in the statement of Theorem I.1. Recall that the definition of the operators $\Lambda_{\alpha, z}$ depends, in principle, on n. However, if $\alpha \in \mathfrak{A}_{k, \ell}$ and n is large ($n \geq k$, $n \geq \alpha_j$) the operator $\Lambda_{\alpha, z}$ no longer depends on n (in which case it does not depend on s either). This observation, together with the fact that n is fixed, justifies omitting n from the notation for $\Lambda_{\alpha, z}$. Moreover, the error terms $E_{d, \nu}^{s, z}$ are independent of d, as long as $d \geq \nu$, which will always be the case, so we shall write $E_{\nu, \nu}^{s, z} = E_{d, \nu}^{s, z}$. Below, we will use such error terms for $\nu = \mu$ and $\nu = n$, with $n > \mu$ appropriately chosen.

We start from Lemma III.9. All the terms appearing in that lemma are operators with smooth distribution kernels by Corollary III.8. We recall that we denote by $T(x, y)$ the
distribution kernel of an operator T with smooth kernel (so $Tf(x) = \int_{\mathbb{R}^N} T(x,y)f(y)dy$). In terms of kernels, the formula of Theorem IV.7 takes the form

$$e^{L^s x} (x,y) = e^{L_0^s} (x,y) + \sum_{\ell=1}^{\nu} s^\ell \Lambda_\ell^s (x,y) + s^{\nu+1} E_{\nu,\nu}^s (x,y)$$

where again $\nu = \mu$ or $\nu = n$.

We recall that L_0^s is obtained from L by freezing the coefficients of the highest order derivatives of L at z and by discarding the lower order terms.

We now substitute $x = z + s^{-1}(x-z)$, $y = z + s^{-1}(y-z)$, and $z = z(x,y)$ in the Equation (53) above, for some function $z(x,y)$ to be specified later. Lemma III.2 and Equation (53) then give

$$e^{s^2 L} (x,y) = s^{-N} e^{L^s x} (z + s^{-1}(x-z), z + s^{-1}(y-z))$$

$$= \sum_{\ell=0}^{\nu} s^\ell \Lambda_\ell^s (z + s^{-1}(x-z), z + s^{-1}(y-z))$$

$$+ s^{\nu+1} E_{\nu,\nu}^s (z + s^{-1}(x-z), z + s^{-1}(y-z)),$$

which is valid for any $\nu \leq n$, in particular for $\nu = \mu$ and for $\nu = n$.

Using the definition of the approximate Green function $G_{t}^{[\nu,z]}(x,y)$, for $t = s^2$, in Equation (13), we then obtain

$$e^{s^2 L} (x,y) = \mathcal{G}_{s^2}^{[\nu,z]} (x,y) + s^{\nu+1} \mathbb{E}_{s^2}^{s,z} (x,y),$$

The error term in the approximation defined by Equation (13) is consequently given by

$$e^{s^2 L} (x,y) - \mathcal{G}_{s^2}^{[\nu,z]} (x,y) = s^{\nu+1} \mathbb{E}_{s^2}^{s,z} (x,y),$$

where $\mathbb{E}_{s^2}^{s,z}$ is as in Equation (43) with $s = \sqrt{t}$, and $z = z(x,y)$.

We next introduce the dilated error operator

$$\mathcal{E}_{s^2}^{[\nu,z]} f(x) = \int_{\mathbb{R}^N} \mathbb{E}_{s^2}^{s,z} (z + s^{-1}(x-z), z + s^{-1}(y-z)) f(y)dy,$$

and define the approximation kernel $\mathcal{G}_{s^2}^{[\nu,z]}$ to be the operator with kernel $\mathcal{G}_{s^2}^{[\nu,z]} (x,y)$, so that

$$e^{tL} - \mathcal{G}_{t}^{[\nu,z]} = t^{(\nu+1)/2} \mathcal{E}_{t}^{[\nu,z]}.$$

28
We will use the above formula only for $\nu = \mu < n$, where n will be taken large enough.

Indeed, if $\mu < n$, then the error term can be written as,

$$
E_{s,z}^{\mu,\mu}(z + s^{-1}(x - z), z + s^{-1}(y - z)) =
\sum_{\ell=\mu+1}^{(n+1)^2 \max\{\ell,n+1\}} \sum_{k=1}^{\ell-\mu-1} \sum_{\alpha \in A_{k,\ell}} s^{\ell-\mu-1} \Lambda_{\alpha,z}(z + s^{-1}(x - z), z + s^{-1}(y - z)).
$$

(See Equation (14), for instance.) We will estimate $E_{\mu,\mu}^{n,z} = E_{n,\mu}^{s,z}$ by writing

$$
E_{\mu,\mu}^{s,z} = \sum_{\ell=\mu+1}^{n} s^{\ell-\mu-1} \sum_{k=\mu+1}^{\ell} \sum_{\alpha \in A_{k,\ell}} \Lambda_{\alpha,z} + s^{n+1-\mu} E_{n,n}^{s,z}.
$$

The point of this formula is that the error term $E_{\mu,\mu}^{s,z}$ is independent of n, as long as $\mu \leq n$. However, splitting the error as done above will allow a better control on the error estimate of Theorem I.1. In fact, we will show that each $\Lambda_{\alpha,z}^{\ell}$ in the first sum, which does not depend on s, is a pseudodifferential operator, and its contribution to the overall error after the parabolic rescaling will be obtained in terms of a refined analysis on its symbol. This analysis, in turn, leads to some refined estimates uniformly in s on the norm of the operator between weighted Sobolev Spaces. On the other hand, we will obtain only rough estimates on the remainder term $E_{n,n}$, which will nevertheless be enough, due to the additional factor $s^{n+1-\mu}$.

The main issue in treating the remainder is that some of its terms $\Lambda_{\alpha,z}^{\ell}$ implicitly depend on s, a fact which makes it difficult to show the remainder is also a pseudodifferential operator, at least in the usual Hörmander class. It may be possible to show that $E_{n,n}$ is indeed a pseudodifferential operator employing more exotic symbol classes or amplitudes, but we do not need to pursue this point here, since we are able to prove the sharp estimates of Theorem I.1 in any case.

We now proceed along these lines. The dilated error operator introduced in Equation (57) can be rewritten in terms of approximation operators

$$
L_{s,\alpha}f(x) = s^{-N} \int_{\mathbb{R}^N} \Lambda_{\alpha,z}(z + s^{-1}(x - z), z + s^{-1}(y - z)) f(y) dy,
$$

as

$$
E_{s,z}^{[\mu,z]} = \sum_{\ell=\mu+1}^{(n+1)^2 \max\{\ell,n+1\}} \sum_{k=1}^{\ell-\mu-1} \sum_{\alpha \in A_{k,\ell}} s^{\ell+N-\mu-1} L_{s,\alpha}.
$$

We therefore obtain

$$
E_{\ell}^{[\mu,z]} = \sum_{\ell=\mu+1}^{n} s^{\ell-\mu-1} \sum_{k=\mu+1}^{\ell} \sum_{\alpha \in A_{k,\ell}} L_{s,\alpha} + s^{n+1-\mu} E_{\ell}^{[n,z]}.
$$
To evaluate $\|E^{[n,z]}_{x^2}\|_s$ in a desired norm, it will then be enough to evaluate each operator norm $\|L_{s,\alpha}\|$ (between suitable Sobolev spaces). As explained above, we shall derive a rough estimate for the terms with $\alpha \in A_{n+1,\ell}$ or some $\alpha_i = n + 1$ (which corresponds to $\Lambda_{\alpha,z}$ depending on s). When $\Lambda_{\alpha,z}$ is independent of s (that is for $\alpha \in A_{k,\ell}$, $k \leq n$, $\alpha_i \leq n$), we shall derive some more precise estimates. We begin with these refined, more precise estimates.

A. Precise estimates

Recall that we denote by $\Lambda_{\alpha,z}(x,y)$ the distribution kernel of the operator $\Lambda_{\alpha,z}$ since it is a smooth function. Thus, for $\alpha \in A_{k,\ell}$, $k \leq n$, $\alpha_i \leq n$, $\Lambda_{\alpha,z}(x,y)$ does not depend on s. Let us fix a function $z(x,y)$, which will be specified later, and let $L_{s,\alpha}$ be the operator with distribution kernel

$$s^{-N}\Lambda_{\alpha,z}(z + s^{-1}(x - z), z + s^{-1}(y - z)),$$

introduced above in Equation (61), where $z = z(x,y)$.

We will show below that in this range of α for a suitable choice of the function z, the operator $L_{s,\alpha}$ is a pseudodifferential operator whose symbol is well behaved. We shall then use symbol calculus to derive the desired error estimates. We refer to48 for all relevant properties of pseudodifferential operators. Below, we follow the usual convention and set $D = \frac{1}{i}\partial_i$ ($i = \sqrt{-1}$), where if not specified otherwise $\partial = \partial_x$.

We shall need the standard seminorms $p_{m,\alpha,\beta}$ given by

$$p_{m,\alpha,\beta}(a) = \sup_{(x,\xi) \in \mathbb{R}^N \times \mathbb{R}^N} |\langle \xi \rangle^{\beta} |^{-m} \partial_x^\alpha \partial_\xi^\beta a(x,\xi)|. \quad (64)$$

Then the Hörmander class $S^m_{1,0} := S^m_{1,0}(\mathbb{R}^N \times \mathbb{R}^N)$, $m > -\infty$, is by definition the set of functions $a : \mathbb{R}^{2N} \to \mathbb{C}$ satisfying $p_{m,\alpha,\beta}(a) < \infty$. The space $S^{-\infty} = S^{-\infty}(\mathbb{R}^N \times \mathbb{R}^N)$ is defined by the same seminorms, but with $m \in \mathbb{Z}$ arbitrary.

We also denote by

$$\mathcal{F}u(x) = \hat{u}(\xi) := \int_{\mathbb{R}^N} e^{-i\xi \cdot x} u(x) dx \quad (65)$$

the usual Fourier transform of u. For any symbol a in the Hörmander class $S^m_{1,0} := S^m_{1,0}(\mathbb{R}^N \times \mathbb{R}^N)$, we denote by $a(x,D)$ the operator

$$a(x,D)u(x) = (2\pi)^{-N} \int_{\mathbb{R}^N} e^{i\xi \cdot x} a(x,\xi) \hat{u}(\xi) d\xi, \quad (66)$$

30
defined for \(u \) in the Schwartz space \(S(\mathbb{R}^N) \). We will denote by \(\mathcal{F}_2 \) the Fourier transform in the second variable of a function of two variables. For \(a \in S^{-\infty} := S_{1,0}^{-\infty}(\mathbb{R}^N \times \mathbb{R}^N) \), the operator \(a(x, D) \) is smoothing with distribution kernel
\[
a(x, D)(x, y) = (2\pi)^{-N} \int_{\mathbb{R}^N} e^{i(x-y)\cdot \xi} a(x, \xi) d\xi = (\mathcal{F}_2^{-1} a)(x, x - y).
\]

Let \(K \) be a smooth function on \(\mathbb{R}^N \times \mathbb{R}^N \). If the integral operator defined by \(K \), which is smoothing, is in fact a pseudodifferential operator \(a(x, D) \), then we can recover \(a \) from \(K \) by the formula
\[
(\mathcal{F}_2^{-1} a)(x, y) = K(x, x - y),
\]
so
\[
a(x, \xi) = \int_{\mathbb{R}^N} e^{-i\xi \cdot y} K(x, x - y) dy.
\] (67)
Recall next the function \(G(z; x) = (4\pi)^{-N/2} \det(A(z))^{-1/2} e^{-x^T A(z)^{-1} x/4} \) introduced in Equation (6). Then the distribution kernel of \(e^{L_\zeta} \) is given by
\[
e^{L_\zeta}(x, y) = G(z; x - y),
\] (68)
and a direct computation gives the following result.

Lemma V.1. Let \(z \in \mathbb{R}^N \) be a parameter and let us consider the operator \(T = (x - z)^\beta \partial^\gamma_x e^{L_\zeta} \), where \(\beta \) and \(\gamma \) are multi-indices. Then the distribution kernel of \(T \) is given by
\[
T(x, y) = (x - z)^\beta (\partial^\gamma_x G)(z; x - y).
\]

We will also need the following standard result.

Lemma V.2. (i) The Fourier transform in the second variable establishes an isomorphism \(\mathcal{F}_2 : S^{-\infty} := S^{-\infty}(\mathbb{R}^N \times \mathbb{R}^N) \to S^{-\infty} \).

(ii) Multiplication defines a continuous map \(S_m^{(1,0)} \times S^{-\infty} \to S^{-\infty} \).

(iii) If \(\{a_s\}_{s \in (0,1]} \) is uniformly bounded in \(S^{-\infty} \) and \(b_s(x, \xi) = a_s(x, s\xi) \), then the family \(\{s^k b_s\}_{s \in (0,1]} \) is uniformly bounded in \(S^{-k}_{1,0}, k \geq 0 \).

Proof. This follows from a straightforward calculation. \(\square \)

For our main result, we require some assumptions on the dilation center \(z \).

Definition V.3. A function \(z : \mathbb{R}^{2N} \to \mathbb{R}^N \) will be called admissible if
(i) \(z(x,x) = x \), for all \(x \in \mathbb{R}^N \).

(ii) All derivatives of \(z \) are bounded.

A typical example is \(z(x,y) = \lambda x + (1 - \lambda) y \), for some fixed parameter \(\lambda \). A simple application of the mean value theorem gives that \(\langle z - x \rangle \leq C \langle y - x \rangle \) for some constant \(C > 0 \).

We are now ready to state and prove the main result of this subsection.

Theorem V.4. Let \(\alpha \in \mathfrak{A}_{k,\ell}, k \leq n, \alpha \leq n \). Assume that \(z : \mathbb{R}^{2N} \to \mathbb{R}^N \) is admissible. Then there exists a uniformly bounded family \(\{a_s\}_{s \in (0,1]} \) in \(S^{-\infty} \) such that, if \(b_s(x,\xi) := a_s(x,s\xi) \), then

\[
\mathcal{L}_{s,\alpha} = b_s(x,D).
\]

Proof. By Lemma IV.6, we have that \(\Lambda_{\alpha,z} \) is a finite sum of terms of the form \(\varphi(z)(x - z)^{\beta} \partial_x^\alpha e^{L_0^s} \) with \(\varphi \in C_0^\infty \). Let then \(k_z(x,y) \) be the distribution kernel of \(a(z)(x - z)^{\beta} \partial_x^\alpha e^{L_0^s} \) and let

\[
K_s(x, y) := s^{-N} k_z(z + s^{-1}(x - z), z + s^{-1}(y - z)), \quad z = z(x,y).
\]

By abuse of notation, we shall denote also by \(K_s \) the integral operator defined by \(K_s \). It is enough then to prove our theorem for \(K_s \). Namely, it is enough to show that there exists a uniformly bounded family \(\{a_s\}_{s \in (0,1]} \) in \(S^{-\infty} \) such that

\[
K_s = a_s(x, sD).
\]

By lemma V.1, we have that the distribution kernel of \(\partial_x^\alpha e^{L_0^s} \) is of the form \(\psi(z,x - y) \) and belong to \(S^{-\infty} \) as a function of \(x - y \) for \(z \) fixed. (This is consistent with the fact that for each fixed \(z \), \(\partial_x^\alpha e^{L_0^s} \) is a convolution operator.) More precisely \(\psi(z,x) \) is \(F_2(i\xi)^\gamma e^{-\xi^T A(z) \xi} \).

This observation implies

\[
K_s(x,y) = \varphi(z(x,y))s^{-|\beta|-N}(x - z(x,y))^\beta \psi(z(x,y), s^{-1}(x-y)) =:
\]

\[
\varphi(z)s^{-|\beta|-N}(x - z)^\beta \psi(z, s^{-1}(x-y)), \quad z = z(x,y).
\]

We then let

\[
b_s(x,\xi) = \int_{\mathbb{R}^N} e^{-iy\xi} \varphi(z)s^{-|\beta|-N}(x - z)^\beta \psi(z, s^{-1}y) dy, \quad z = z(x,x-y).
\]
Next, we observe that if we change variables from \(y\) to \(sy\), we can write \(b_s(x, \xi) = a_s(x, s\xi)\), where
\[
a_s(x, \xi) = \int_{\mathbb{R}^N} e^{-iy\cdot\xi} \phi(z) s^{-|\beta|} (x - z)^\beta \psi(z, y) dy, \quad z = z(x, x - sy).
\]

We need to show that \(a_s\) is a bounded family in \(S^{-\infty}\). To this end, we observe that, since \(\phi \in C_0^\infty\) and the derivatives of \(z\) are all bounded, \(\phi(z) \in S_{1,0}^1\) as a function of \(y\) for each \(x\). Similarly, for each \(j = 1, \ldots, N\), \(s^{-1}(x_j - z_j(x, x - sy)) \in S_{1,0}^1\) as a function of \(y\) for fixed \(x\), and collectively they form bounded families for \(s \in (0, 1]\). Lastly, from what already observed above, \(\psi(z, y) \in S^{-\infty}\) as a function of \(y\) for each fixed \(x\). Therefore, \(a_s \in S^{-\infty}\) uniformly in \(s\) by Lemma V.2. The proof is complete.

We now obtain the desired refined mapping property estimate by standard results on pseudodifferential operators. Below, \(t = s^2\).

\[t^{k/2} \| L_{s,\alpha} \|_{W^{r,p} \to W^{r+k,p}} \leq C_{k,r,p}, \quad (69) \]

Theorem V.5. Let \(\alpha \in \mathfrak{A}_{k,t}\), \(k \leq n\), \(\alpha_j \leq n\). Assume that \(z : \mathbb{R}^{2N} \times \mathbb{R}^N\) is admissible. Then for any \(1 < p < \infty\), any \(r \in \mathbb{R}\),

\[t^{k/2} \| L_{s,\alpha} \|_{W^{r,p} \to W^{r+k,p}} \leq C_{k,r,p}, \]

for a constant \(C_{k,r,p}\) independent of \(t \in (0, 1]\).

B. Rough estimates

We now move to study the mapping properties of \(\Lambda_{\alpha,z}\) when either \(\alpha \in \mathfrak{A}_{n+1,t}\) or some \(\alpha_i = n + 1\). In this case, the operators \(\Lambda_{\alpha,z}\) depend on \(s\) also, although this dependence is not shown in the notation.

The mapping properties that we establish in this subsection will allow us to obtain corresponding mapping properties for the error operator \(E_{n,n}^{s,z}\), which is not immediately in the form of a pseudodifferential operator. Consequently, we are not able to derive bounds as those in Theorem V.4 above. Nevertheless, the bounds we derive are sufficient to establish the **sharp** error estimates as \(t \to 0^+\) in weighted Sobolev spaces for the overall approximation, given in Theorem I.1. This result is achieved by choosing judiciously an \(n\) large enough.

As before we denote \(W_{\alpha}^{r,p} = W_{\alpha,w}^{r,p}\) as before, where \(w\) is the center of the weight \(\langle x \rangle_w = \langle x - w \rangle = \langle w - x \rangle\) used to define the exponentially weighted Sobolev spaces (see Equation
We shall also write $L^p_a = W_a^{0,p}$. The main result of this section is the following proposition.

Proposition V.6. Assume that $z : \mathbb{R}^N \rightarrow \mathbb{R}^N$ is admissible. For any α, any $1 < p < \infty$, $k \in \mathbb{Z}_+$, $r \geq 0$, and $a \in \mathbb{R}$,

$$s^k\|L_{s,\alpha}\|_{L^p_a \rightarrow W_k^p} \leq C_{k,p},$$

for a constant $C_{k,p}$ independent of $s \in (0, 1]$, of a in a bounded set, and independent of the center of the weight that defines the weighted Sobolev spaces W_k^p.

Proof. The proof is based on explicit kernel estimates and Riesz’ lemma. By replacing the operator L with $e^{a(x-w)}Le^{-a(x-w)}$, where w is the center of the weight, we can assume that $a = 0$, as before.

As before, $\Lambda_{\alpha,z}(x,y)$ is the smooth distribution kernel of the operator $\Lambda_{\alpha,z}$. For any given point $v \in \mathbb{R}^N$, we denote by δ_v the distribution defined by $\delta_v(f) = \partial^\beta f(v)$ (we agree that $\delta_0(f) = f(v)$). Then

$$\partial^\beta \partial^\gamma \Lambda_{\alpha,z}(x,y) = \langle \delta_x^\beta, (\partial^\gamma \Lambda_{\alpha,z})(\delta_y^\gamma) \rangle,$$

where \langle , \rangle is the usual duality pairing. Since all the coefficients (and their derivatives) of L are uniformly bounded, the derivative $\partial^\beta \Lambda_{\alpha,z}$ will satisfy the same mapping properties as $\Lambda_{\alpha,z}$. Furthermore, for each multi-index β, $\partial^\beta \delta_y \in H^{-q}(\mathbb{R}^N)$ for $q > N/2 + |\beta|$ and has norm independent of y.

In the rest of the proof, we use the weighted Sobolev spaces introduced in (19). We recall that the mapping properties between these spaces are uniform in term of the base point. We can therefore choose the weight center at x in estimating (71). We will write $H_a^s = W_a^{s,2}$. Then $\delta_y \in H_a^{-q}$ for all $a \in \mathbb{R}$, $q > N/2 + |\beta|$, with

$$\|\partial^\beta \delta_y\|_{H_a^{-q}} := \|e^{a<y-x>}\partial^\beta \delta_y\|_{H^{-q}} \leq C_{q,\alpha}e^{(a+\epsilon)(y-x)}.$$

Next, we pick an $\epsilon > 0$ small enough. Replacing ϵ with ϵ/k, where k is such that $\alpha \in \Omega_{k,\epsilon}$ in Corollary III.8 yields

$$\|\partial^\beta \Lambda_{\alpha,z}\|_{H_a^{-q} \rightarrow H_{a-\epsilon/k}^s} \leq e^{\epsilon(x-z)},$$
and hence
\[
\left| \partial^\beta_x \partial^\gamma_z \partial^\eta_y \Lambda_{\alpha,z}(x,y) \right| = \left| \langle \partial^\beta_x \delta_x, \partial^\gamma_z \Lambda_{\alpha,z} \partial^\eta_y \delta_y \rangle \right|
\leq C \| \partial^\beta_x \delta_x \|_{H^{-q-1}/k} \| \partial^\gamma_z \Lambda_{\alpha,z} \|_{H^{-q} \rightarrow H^q \rightarrow H^{-q}} \| \partial^\eta_y \delta_y \|_{H^{-q}}
\leq Ce^{(x-z)-(a+\epsilon)(y-x)}, \quad (72)
\]
where \(q > N/2 + \max(|\beta|, |\beta'|, |\beta''|) \).

We will employ the bounds above to estimate
\[
\mathcal{L}_{s,\alpha}(x,y) = s^{-N} \Lambda_{\alpha,z}(z + s^{-1}(x - z), z + s^{-1}(y - z)), \quad z = z(x,y). \quad (73)
\]

We first use the chain rule to conclude that, if \(\gamma \) is any multi-index, then \(\partial^\gamma_x \mathcal{L}_{s,\alpha}(x,y) \) is a sum of terms of the form
\[
s^{-j} \partial^\beta_x \partial^\gamma_z \partial^\eta_y \Lambda_{\alpha,z}(z + s^{-1}(x - z), z + s^{-1}(y - z)) P,
\]
for appropriate multi-indices \(\beta, \beta', \) and \(\beta'' \), with \(P \) a product of factors of the form \(\partial^\alpha z \) and \(j \leq |\gamma| \). Our assumptions on \(z \) imply that \(p \) is bounded. Using also Equation (72), we obtain for \(\epsilon \) sufficiently small,
\[
\left| \partial^\gamma_x \mathcal{L}_{s,\alpha}(x,y) \right| \leq Cs^{-N-|\gamma|} e^{e(s^{-1}(x-z)) - a(s^{-1}(y-x))} \leq Cs^{-N-|\gamma|} e^{-a(s^{-1}(y-x))/2}, \quad z = z(x,y), \quad (74)
\]
where the last inequality follows from \(\langle x - z \rangle \leq C \langle y - x \rangle \). From this inequality, we obtain after the change of variables \(v = s^{-1}(y - x) \)
\[
\int_{\mathbb{R}^N} \left| \partial^\gamma_x \mathcal{L}_{s,\alpha}(x,y) \right| dy \leq C_a s^{-|\gamma|}, \quad \forall x \in \mathbb{R}^N,
\]
and
\[
\int_{\mathbb{R}^N} \left| \partial^\gamma_x \mathcal{L}_{s,\alpha}(x,y) \right| dx \leq C_a s^{-|\gamma|}, \quad \forall y \in \mathbb{R}^N,
\]
These two estimates together with Riesz Lemma give that the map \(f \rightarrow s^{|\gamma|} \partial^\gamma_x \mathcal{L}_{s,\alpha} f \) is bounded from \(L^p \) to \(L^p \), which is enough to establish the result. \(\square \)

This proposition, and the definition of \(E^{n\times z}_{n,n} \) immediately imply the following lemma, where as usual \(t = s^2 \).
Lemma V.7. Assume that \(z : \mathbb{R}^{2N} \times \mathbb{R}^N \) is admissible, then for each \(r \in \mathbb{R} \), \(q > 0 \), we have
\[
\| \mathcal{E}_{t}^{[n,z]} \|_{W^{r,p} \rightarrow W^{r+q,p}} \leq C_T \frac{t^{-(r+q)/2}}{t}, \quad t \in (0, T).
\]

Proof. Indeed, this follows from Proposition V.6, Equation (62), and the continuous inclusion \(W^{r,p} \hookrightarrow L^p \), \(r \geq 0 \). For \(r \) noninteger we also use interpolation.

We note that in the above proposition we have an additional factor of \(t^{-q/2} \) compared with the refined estimates of Theorem V.5. This extra factor will not affect the final result, however, provided the order \(n \) of the Taylor expansion of \(L \) is chosen sufficiently large.

Then, the lemma leads to the following more precise estimate for the error operator \(\mathcal{E}_{t}^{[\mu,z]} \).

Theorem V.8. Assume that \(z : \mathbb{R}^{2N} \rightarrow \mathbb{R}^N \) is admissible, then we have
\[
\| \mathcal{E}_{t}^{[\mu,z]} \|_{W^{r,p} \rightarrow W^{r+k,p}} \leq C_T \frac{t^{-k/2}}{t}, \quad t \in (0, T).
\]

Proof. Let us chose \(n+1 \geq \mu + r \) and \(t = s^2 \), as usual. Then Theorems V.5 and V.8 applied to Equation (63) give
\[
\| \mathcal{E}_{t}^{[\mu,z]} \|_{W^{r,p} \rightarrow W^{r+k,p}} \leq \sum_{\ell = \mu + 1}^{n} s^{\ell - \mu - 1} \sum_{k = \mu + 1}^{\ell} \sum_{\alpha \in A_{k,\ell}} \| \mathcal{L}_{\alpha,z} \|_{W^{r,p} \rightarrow W^{r+k,p}}
\]
\[
\hspace{1cm} + s^{n+1-\mu} \| \mathcal{E}_{t}^{[n,z]} \|_{W^{r,p} \rightarrow W^{r+k,p}} \leq C s^{-k} (1 + s^{n+1-\mu} s^{-r-k}) \leq C s^{-k}.
\]

This completes the proof of Theorem I.1.

From (13), we immediately obtain the following property on the principal part of the asymptotic expansion.

Corollary V.9. Assume that \(z : \mathbb{R}^{2N} \rightarrow \mathbb{R}^N \) is admissible. For each \(1 < p < \infty \), \(r \in \mathbb{R} \), \(\mu \geq 0 \), and any \(f \in W^{r,p}_a \) let us define
\[
\mathcal{G}_{t}^{[\mu,z]} f(x) := \int_{\mathbb{R}^N} \mathcal{G}_{t}^{[\mu,z]}(x,y) f(y) \, dy,
\]
then \(\mathcal{G}_{t}^{[\mu,z]} f \rightarrow f \) in \(W^{r,p}_a \) for \(t \rightarrow 0_+ \).

ACKNOWLEDGMENTS

We thank Andrew Lesniewski and Michael Taylor for sending us their papers and for useful discussions. We also thank Richard Melrose for carefully reading our paper and for pointing out a possible misunderstanding in an earlier version of this paper.
REFERENCES

