1. (10 points) Prove that

\[f \in L^p(\mathbb{R}^n) \iff \sum_{-\infty}^{+\infty} 2^{kp} \lambda_f(2^k) < \infty, \]

where \(\lambda_f \) is the distribution function of \(f \).

2. (10 points) Let \(f \in L^p(\mathbb{R}) \) and let \(u(x,y) = P_y * f(x), \ y > 0 \), be its harmonic extension to the upper half-plane \(\mathbb{R}^2_+ = \{ (x,y) \mid x \in \mathbb{R}, \ y > 0 \} \), where \(P_y \) is the Poisson kernel. Define the non-tangential maximal function \(u^*(x) \) by

\[u^*(x) = \sup_{(x',y) \in \Gamma_x} |u(x',y)|, \]

where \(\Gamma_x \) is the unit cone with vertex at \(x \)

\[\Gamma_x = \{ (x',y) \mid |x' - x| < y \}. \]

Using the material discussed in class, show that \(u^*(x) \leq CMf(x), \) a.e. \(x \in \mathbb{R}, \) where \(Mf \) being the Hardy-Littlewood maximal function and \(C \) a positive constant. Conclude that the non-tangential limit

\[\lim_{(x',y) \to (x,0), (x',y) \in \Gamma_x} u(x',y) \]

exists and it is equal to \(f(x) \) for almost all \(x \in \mathbb{R}. \)

Hint: Use the results for approximate identities.

3. (10 points) Suppose \(f \) is a function supported on a ball \(B \subset \mathbb{R}^n \) of finite radius. Prove that \(Mf \in L^1(B) \) if \(|f| \log(2 + |f|) \in L^1(B). \)

Hint: Let \(Mf^1 = Mf \chi_{\{Mf(x) > 1\}} \) and write \(Mf = Mf^1 + (Mf - Mf^1) \). Use (without proof) that \(\forall \alpha > 0, \)

\[|\{x \mid Mf(x) > \alpha\}| \leq \frac{2C}{\alpha} \int_{\{|f(x)| > \alpha/2\}} |f(x)| \, dx. \]