1) Let X be a space with the trivial topology. Find all the continuous maps $f : X \to \mathbb{R}$. Do the same if X has the discrete topology.

2) Let F be a family of continuous, real-valued functions on a compact, Hausdorff space X. Suppose F separate points in X. Then every continuous, real-valued function on X can be uniformly approximated by a polynomial in a finite number of functions of F.

3) Let $f : E \to \mathbb{R}$. Suppose $E = A \cup B$, A, B measurable sets. Show f is measurable if and only if $f|_A$, $f|_B$ is measurable.

4) Let $\langle f_n \rangle$ be a sequence of non-negative measurable functions that converge to f and
Suppose \(f_u \leq f \) for each \(u \). Then:
\[
\int f = \lim_{u \to \infty} \int f_u.
\]

5) Let \(f \) be a function of two variables \((x, t) \) defined on the square \(\mathcal{A} = \{(x, t) \mid 0 \leq x \leq 1, 0 \leq t \leq 1\} \) such that \(f(x, t) \) is nonnegative for each \(t \).
 Suppose \(\lim_{t \to 0} f(x, t) = f(x) \) and \(|f(x, t)| \leq g(x) \)
 \(g \) integrable. Then:
 \[
 \lim_{t \to 0} \int f(x, t) \, dt = \int f(x) \, dx.
 \]

6) Let \(g \) be defined by \(g(0) = 0, \quad g(x) = x^2 \sin^2\left(\frac{1}{x}\right) \)
 for \(x \neq 0 \). Is \(f \) of bounded variation on \([-1, 1]\)?

7) Construct an absolutely continuous function, strictly monotone on \([0, 1]\) such that \(g' = 0 \)
on a set of positive measure.

8) Let \(\{f_u\} \) be a sequence of functions in \(L^p \),
 \(1 < p < \infty \), which converges almost everywhere to a function \(f \) in \(L^p \). Suppose \(f \) is s. t. \(\|f\|_p \leq M + u \)
 Then:
 \[
 \int fg = \lim_{u \to \infty} \int f_u g, \quad \forall g \in L^q.
 \]